scholarly journals Optical detection of single transparent nanoparticles

2018 ◽  
Vol 190 ◽  
pp. 03014
Author(s):  
Yuri Vainer ◽  
Alexander Zybin ◽  
Nikolay Gippius ◽  
Anastasia Malek

We will present the novel experimental far-field optical microscopy technique for detection of single nanoparticles, which weakly absorb a visible light and are characterized by refractive index close to its value in nearby environment (including particles of organic and biological origin: polymer nanoparticles, microand extracellular vesicles, liposomes, viruses etc).

2021 ◽  
Vol 55 (2) ◽  
pp. 331-349
Author(s):  
Hannes Orelma ◽  
Atsushi Tanaka ◽  
Maija Vuoriluoto ◽  
Alexey Khakalo ◽  
Antti Korpela

AbstractTraditional particle board can generate harmful indoor air emissions due to the volatile resin-based compounds present. This study investigated the preparation of sawdust particle board using the novel ionic liquid based fusion approach with [EMIM]OAc. The dissolution parameters were investigated using the thermal optical microscopy technique. The particle board sheets were prepared by hot pressing sawdust in the presence of ionic liquid (IL) ([EMIM]OAc) and subsequently purifying the fusion sawdust matrix from the IL with methanol. The fusion process of the sawdust particles was analysed with SEM and mechanical testing. The raw materials and the produced materials were investigated with elemental analysis, FTIR, and 13C-SS-NMR. IL fusion of the sawdust required a temperature above 150 °C, similar to the glass transition temperature (tg) of lignin. At lower temperatures, strong particle fusion was not obtained. It was observed that the sawdust/IL weight ratio was an important parameter of the fusion process, and a 1:3 weight ratio resulted in the strongest particle boards with a tensile strength of up to 10 MPa, similar to commercial particle boards. The particle fusion process was also studied with a twin-screw extruder. The extrusion enhanced the fusion of the sawdust particles by increasing dissolution of the sawdust particles, which was subsequently seen in elevated tensile strength (20 MPa). The study provides a practical view of how sawdust-based particle board can be manufactured using ionic liquid-based fusion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila Gholami ◽  
Vajihe Taghdiri Nooshabadi ◽  
Shiva Shahabi ◽  
Marzieh Jazayeri ◽  
Rana Tarzemany ◽  
...  

AbstractOral mesenchymal stem cells (MSCs) and their secretomes are considered important factors in the field of medical tissue engineering and cell free biotherapy due to their ease of access, differentiation potential, and successful therapeutic outcomes. Extracellular vesicles (EVs) and the conditioned medium (CM) from MSCs are gaining more attraction as an alternative to cell-based therapies due to the less ethical issues involved, and their easier acquisition, preservation, long term storage, sterilization, and packaging. Bone and periodontal regenerative ability of EVs and CM have been the focus of some recent studies. In this review, we looked through currently available literature regarding MSCs’ EVs or conditioned medium and their general characteristics, function, and regenerative potentials. We will also review the novel applications in regenerating bone and periodontal defects.


2012 ◽  
Vol 452-453 ◽  
pp. 1424-1428
Author(s):  
Han Min Tian ◽  
Li Jia Guo ◽  
Wen Feng Duan ◽  
Rui Xia Yang ◽  
Feng Lan Tian

By analyzing the transmitionce and heat rate of insulating antireflection films conposed by refractive-index adjustable SiO2 layer and TiO2 layers, the optimum combination of antireflection films of BIPV is obtained. The absorption rate at the ultraviolet part that wavelenght excessive inadequate 400nm of the optimized fils is 99.9%, which are directly designed on the surface of the low iron tempered glass panel of BIPV, and in the wavelength range 400nm-800nm, the visible light transmitionce rate is up to 99.5%, and the heat that wavelenght excessive 800nm is reflected of 20%. For the multilayer heat insulation films are composed with the same kind of material while with different refractive indexes, there is no projecting stress between these films and no constraints during the production process of different films for the possible low cost heat insulating of BIPV.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wei Lin ◽  
Zhichen Xiao ◽  
Wenyun Zhou ◽  
Mengjiao Ren ◽  
Zhiwei Zheng

In this paper, the graphene-assisted Goos–Hänchen (GH) shift of the optical beam reflected from a planar multilayer configuration is investigated. The increased positive Goos–Hänchen shifts can be modulated by adjusting the Fermi energy due to graphene with unique optical properties in the visible light range. Moreover, the GH shift can be tuned by varying the layers of graphene, the thickness of the medium, incident wavelength, and so on. These results will be useful for designing the novel graphene-based optical sensing and switching.


2009 ◽  
Vol 79-82 ◽  
pp. 1383-1386
Author(s):  
Yun Lin Chen ◽  
Hai Wei Li ◽  
Yuan An Li

Using the tightly focused visible light (wavelength λ=488nm) illuminating, the ferroelectric domain patterns of the undoped lithium niobate crystal have been demonstrated. The influence of the visible light intensity on the domain nucleation field was investigated. The reduction of nucleation field decreases exponentially with increasing incident irradiation intensity. Once a domain is nucleated it can be dictated by the far-field light diffraction patterns. An assumption is proposed that the reduction of nucleation field is directly related to the defects mobility and structure of the crystals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sushanth Reddy Amanaganti ◽  
Miha Ravnik ◽  
Jayasri Dontabhaktuni

Abstract Sub-wavelength periodic nanostructures give rise to interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such structures are usually metallic which results in high dissipative losses and limitations for use; therefore, dielectric nanostructures are increasingly considered as a strong alternative to plasmonic (metallic) materials. In this work, we show light-matter interaction in a high refractive index dielectric metasurface consisting of an array of cubic dielectric nano-structures made of very high refractive index material, Te in air, using computer modelling. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the near-field coupling of the field modes from neighboring dielectric structures followed by a sharp peak in the transmission at higher frequencies. From the spatial distribution of the electric and magnetic fields and a detailed multipole analysis in both spherical harmonics and Cartesian components, the dominant resonant modes are identified to be electric and magnetic dipoles. Specifically at lower frequency (60 THz) a novel anapole-like state characterized by strong-suppression in reflection and absorption is observed, reported very recently as ‘lattice-invisibility’ state. Differently, at higher frequency (62 THz), strong absorption and near-zero far field scattering are observed, which combined with the field profiles and the multipole analysis of the near-fields indicate the excitation of an anapole. Notably the observed novel modes occur in the simple geometry of dielectric cubes and are a result of collective response of the metasurfaces. Periodicity of the cubic metasurface is shown as the significant material tuning parameter, allowing for the near-field and far-field coupling effects of anapole metasurface. More generally, our work is a contribution towards developing far-fetching applications based on metamaterials such as integrated devices and waveguides consisting of non-radiating modes.


ChemInform ◽  
2005 ◽  
Vol 36 (39) ◽  
Author(s):  
Meindert A. van Dijk ◽  
Markus Lippitz ◽  
Michel Orrit

2005 ◽  
Vol 15 (10) ◽  
pp. 1459-1468 ◽  
Author(s):  
GEORGE VENKOV

This paper deals with the scattering of time-harmonic acoustic waves by inhomogeneous medium. We study the problem to recover the near and the far field using a priori information about the refractive index and the support of inhomogeneity. The incident spherical wave is modified in such a way as to recover the plane wave incidence when the source point approaches infinity. Applying the low-frequency expansions, the scattering medium problem is reduced to a sequence of potential problems for the approximation coefficients in the presence of a monopole singularity located at the source of incidence. Complete expansions for the integral representation formula in the near field as well as for the scattering amplitude in the far field are provided. The method is applied to the case of a spherical region of inhomogeneity and a radial dependent refractive index. As the point singularity tends to infinity, the relative results recover the scattering medium problem for plane wave incidence.


Sign in / Sign up

Export Citation Format

Share Document