Guided-wave Optical Circuits in Silicon-on-Insulator Technology

Author(s):  
P. D. Trinh ◽  
S. Yegnanarayanan ◽  
B. Jalali
1996 ◽  
Vol 143 (5) ◽  
pp. 307-311 ◽  
Author(s):  
B. Jalali ◽  
F. Coppinger ◽  
S. Yegnanarayanan ◽  
P.D. Trinh

Author(s):  
A. De Veirman ◽  
J. Van Landuyt ◽  
K.J. Reeson ◽  
R. Gwilliam ◽  
C. Jeynes ◽  
...  

In analogy to the formation of SIMOX (Separation by IMplanted OXygen) material which is presently the most promising silicon-on-insulator technology, high-dose ion implantation of cobalt in silicon is used to synthesise buried CoSi2 layers. So far, for high-dose ion implantation of Co in Si, only formation of CoSi2 is reported. In this paper it will be shown that CoSi inclusions occur when the stoichiometric Co concentration is exceeded at the peak of the Co distribution. 350 keV Co+ ions are implanted into (001) Si wafers to doses of 2, 4 and 7×l017 per cm2. During the implantation the wafer is kept at ≈ 550°C, using beam heating. The subsequent annealing treatment was performed in a conventional nitrogen flow furnace at 1000°C for 5 to 30 minutes (FA) or in a dual graphite strip annealer where isochronal 5s anneals at temperatures between 800°C and 1200°C (RTA) were performed. The implanted samples have been studied by means of Rutherford Backscattering Spectroscopy (RBS) and cross-section Transmission Electron Microscopy (XTEM).


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2018 ◽  
Vol 86 (7) ◽  
pp. 199-206 ◽  
Author(s):  
Ömür Işıl Aydin ◽  
Judson Robert Holt ◽  
Cyrille Le Royer ◽  
Laks Vanamurthy ◽  
Thomas Feudel ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 50
Author(s):  
Vladimir Generalov ◽  
Olga Naumova ◽  
Dmitry Shcherbakov ◽  
Alexander Safatov ◽  
Boris Zaitsev ◽  
...  

The presented results indicate virus-like particles of the coronavirus (CVP) using a nanowire (NW) biosensor based on silicon-on-insulator technology. In the experiment, we used suspensions of CVP and of specific antibodies to the virus. Measurements of the current value of the field-effect transistor before and after the introduction of the CVP on the surface of the nanowire were performed. Results showed antibody + CVP complexes on the phase section with the surface of the nanowire modulate the current of the field-effect transistor; CVP has an electrically positive charge on the phase section “nanowire surface-viral suspension»; antibody + CVP complexes have an electrically negative charge on the phase section “nanowire surface-viral suspension”; the sensitivity of the biosensor is made up of 10−18 M; the time display was 200–300 s.


2016 ◽  
Vol 117 ◽  
pp. 100-116 ◽  
Author(s):  
Pierre Morin ◽  
Sylvain Maitrejean ◽  
Frederic Allibert ◽  
Emmanuel Augendre ◽  
Qing Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document