scholarly journals Enhanced light output of InGaN/GaN blue light emitting diodes with Ag nano-particles embedded in nano-needle layer

2012 ◽  
Vol 20 (6) ◽  
pp. 6036 ◽  
Author(s):  
Lee-Woon Jang ◽  
Jin-Woo Ju ◽  
Dae-Woo Jeon ◽  
Jae-Woo Park ◽  
A. Y. Polyakov ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hsin-Ying Lee ◽  
Yu-Chang Lin ◽  
Yu-Ting Su ◽  
Chia-Hsin Chao ◽  
Véronique Bardinal

The GaN-based flip-chip white light-emitting diodes (FCWLEDs) with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.


2021 ◽  
Vol 10 (3) ◽  
pp. 1316-1324
Author(s):  
My Hanh Nguyen Thi ◽  
Phung Ton That

In this research, the SiO2 nano-particles (NPs) usage in enhancing optical performances of InGaN/GaN-based white light-emitting diodes (WLEDs) with remote phosphor structure. The research subject shows better lighting capacity than the white LEDs devices without the space between the layers. The adjustment in development process resulted in enhancements of internal quantum efficiency (IQE) and light extraction efficiency (LEE) that lead to 13.5% luminous efficacy improvement. From the experiments, it can be concluded that the LEE is affected by the trapped light and enhancing the light output with SiO2 scattering properties reduce the amount of trapped light. These results confirm that SiO2 nano-particles is effective in enhancing the optical performance of WLEDs and can be considered for production of higher quality devices.


2018 ◽  
Vol 8 (9) ◽  
pp. 1574 ◽  
Author(s):  
Hong-Seo Yom ◽  
Jin-Kyu Yang ◽  
Alexander Polyakov ◽  
In-Hwan Lee

We demonstrate high-performance InGaN/GaN blue light emitting diodes (LEDs) embedded with an air-void layer produced by a dry-etch of nano-pillars in an n-GaN layer grown on patterned sapphire substrate (PSS), filling the space between nano-pillars with SiO2 nano-particles (NPs) and subsequent epitaxial overgrowth. The structure exhibits enhanced output power compared to similarly grown reference conventional LED without the air-void layer. This change in growth procedure contributes to the increase of internal quantum efficiency (IQE) and light extraction efficiency (LEE) resulting in a 13.5% increase of light output. LEE is 2 times more affected than IQE in the modified structure. Simulation demonstrates that the main effect causing the LEE changes is due to the emitted light being confined within the upper space above the air-void layer and thus enhancing the light scattering by the SiO2 NPs and preferential light via front surface.


2017 ◽  
Vol 56 (10) ◽  
pp. 100305
Author(s):  
Jin-Hyeon Yun ◽  
Kyu Cheol Kim ◽  
Yeon Tae Yu ◽  
Jin Kyu Yang ◽  
Alexander Y. Polyakov ◽  
...  

2015 ◽  
Vol 67 (2) ◽  
pp. 346-349 ◽  
Author(s):  
Hye-Jung Yu ◽  
Yanqun Dong ◽  
Tae-Soo Kim ◽  
Jin-Gyu Lee ◽  
Nan-Cho Oh ◽  
...  

2008 ◽  
Vol 20 (17) ◽  
pp. 1455-1457 ◽  
Author(s):  
Keunjoo Kim ◽  
Jaeho Choi ◽  
Jong Bae Park ◽  
Sang Cheol Jeon ◽  
Jin Soo Kim ◽  
...  

2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 399
Author(s):  
Sang-Jo Kim ◽  
Semi Oh ◽  
Kwang-Jae Lee ◽  
Sohyeon Kim ◽  
Kyoung-Kook Kim

We demonstrate the highly efficient, GaN-based, multiple-quantum-well light-emitting diodes (LEDs) grown on Si (111) substrates embedded with the AlN buffer layer using NH3 growth interruption. Analysis of the materials by the X-ray diffraction omega scan and transmission electron microscopy revealed a remarkable improvement in the crystalline quality of the GaN layer with the AlN buffer layer using NH3 growth interruption. This improvement originated from the decreased dislocation densities and coalescence-related defects of the GaN layer that arose from the increased Al migration time. The photoluminescence peak positions and Raman spectra indicate that the internal tensile strain of the GaN layer is effectively relaxed without generating cracks. The LEDs embedded with an AlN buffer layer using NH3 growth interruption at 300 mA exhibited 40.9% higher light output power than that of the reference LED embedded with the AlN buffer layer without NH3 growth interruption. These high performances are attributed to an increased radiative recombination rate owing to the low defect density and strain relaxation in the GaN epilayer.


Sign in / Sign up

Export Citation Format

Share Document