scholarly journals Luminous Efficacy Enhancement for LED Lamps using Highly Reflective Quantum Dot-based Photoluminescent Films

2021 ◽  
Author(s):  
Binhai Yu ◽  
Zhou Lu ◽  
Guanwei Liang ◽  
Yikai Yuan ◽  
Hong Wang ◽  
...  
2016 ◽  
Vol 4 (32) ◽  
pp. 7601-7606 ◽  
Author(s):  
Jiangcong Zhou ◽  
Feng Huang ◽  
Hang Lin ◽  
Zebin Lin ◽  
Ju Xu ◽  
...  

Inorganic perovskite CsPbBr3−xIx(x= 0–3) QDs with tunable emission wavelength, narrow emission band and high quantum yields were synthesized. The fabricated CsPbBrI2QD-modified WLEDs show excellent performance in luminous efficacy, CCT and CRI, which are quite stable at an operational current as high as 350 mA.


2019 ◽  
Author(s):  
O Mishchenko ◽  
A Schildan ◽  
O Sabri ◽  
M Patt
Keyword(s):  

2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


2020 ◽  
pp. 57-62
Author(s):  
Olga Yu. Kovalenko ◽  
Yulia A. Zhuravlyova

This work contains analysis of characteristics of automobile lamps by Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox, OSLAMPledbulbs with H1, H4, H7, H11 caps: luminous flux, luminous efficacy, correlated colour temperature. Characteristics of the studied samples are analysed before the operation of the lamps. The analysis of the calculation results allows us to make a conclusion that the values of correlated colour temperature of halogen lamps are close to the parameters declared by manufacturers. The analysis of the study results has shown that, based on actual values of correlated colour temperature, it is not advisable to use LED lamps in unfavourable weather conditions (such as rain, fog, snow). The results of the study demonstrate that there is a slight dispersion of actual values of luminous flux of halogen lamps by different manufacturers. Maximum variation between values of luminous flux of different lamps does not exceed 14 %. The analysis of the measurement results has shown that actual values of luminous flux of all halogen lamps comply with the mandatory rules specified in the UN/ECE Regulation No. 37 and luminous flux of LED lamps exceeds maximum allowable value by more than 8 %. Luminous efficacy of LED lamps is higher than that of halogen lamps: more than 82 lm/W and lower power consumption. The results of the measurements have shown that power consumption of a LED automobile lamp is lower than that of similar halogen lamps by 3 times and their luminous efficacy is higher by 5 times.


2001 ◽  
Vol 171 (8) ◽  
pp. 855
Author(s):  
Viktor M. Ustinov ◽  
N.A. Maleev ◽  
Aleksei E. Zhukov ◽  
A.R. Kovsh ◽  
A.V. Sakharov ◽  
...  
Keyword(s):  

2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


Sign in / Sign up

Export Citation Format

Share Document