Tightly focused light field with controllable pure transverse polarization state at the focus

2020 ◽  
Vol 45 (21) ◽  
pp. 6034
Author(s):  
Lei Han ◽  
Shuxia Qi ◽  
Sheng Liu ◽  
Huachao Cheng ◽  
Peng Li ◽  
...  
2016 ◽  
Vol 194 ◽  
pp. 161-183 ◽  
Author(s):  
K. Veyrinas ◽  
V. Gruson ◽  
S. J. Weber ◽  
L. Barreau ◽  
T. Ruchon ◽  
...  

Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongkang Song ◽  
Weici Liu ◽  
Xiaolei Wang ◽  
Faqiang Wang ◽  
Zhongchao Wei ◽  
...  

Metasurfaces have powerful light field manipulation capabilities, which have been extensively studied in the past few years and have developed rapidly in various fields. At present, the focus of metasurface research has shifted to the tunable functionality. In this paper, a temperature-controllable multifunctional metasurface lens based on phase transition material is designed. First of all, by controlling the temperature of the desired working area and the polarization of the incident light, switching among multiple focus, single focus, and no focus at any position can be achieved, and the intensity and helicity of the output light can be adjusted. In addition, a polarization-sensitive intensity-tunable metalens based on the P-B phase principle is designed, when the incident light is linearly polarized light, left-handed circularly polarized light, or right-handed circularly polarized light, it has the same focal point but with different light field intensities. Therefore, the focused intensity can be tunable by the polarization state of the incident light.


2021 ◽  
pp. 127130
Author(s):  
Tianlei Ning ◽  
Yanqiu Li ◽  
Guodong Zhou ◽  
Ke Liu ◽  
Jiazhi Wang

Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 491
Author(s):  
Juan Carlos González de Sande ◽  
Gemma Piquero ◽  
Juan Carlos Suárez-Bermejo ◽  
Massimo Santarsiero

A wide class of nonuniformly totally polarized beams that preserve their transverse polarization pattern during paraxial propagation was studied. Beams of this type are of interest, in particular, in polarimetric techniques that use a single input beam for the determination of the Mueller matrix of a homogeneous sample. In these cases, in fact, it is possible to test the sample response to several polarization states at once. The propagation invariance of the transverse polarization pattern is an interesting feature for beams used in these techniques, because the polarization state of the output beam can be detected at any transverse plane after the sample, without the use of any imaging/magnifying optical system. Furthermore, exploiting the great variety of the beams of this class, the ones that better fit specific experimental constrains can be chosen. In particular, the class also includes beams that present all possible polarization states across their transverse section (the full Poincaré beams (FPB)). The use of the latter has recently been proposed to increase the accuracy of the recovered Mueller matrix elements. Examples of FPBs with propagation-invariant polarization profiles and its use in polarimetry are discussed in detail. The requirement of invariance of the polarization pattern can be limited to the propagation in the far field. In such a case, less restrictive conditions are derived, and a wider class of beams is found.


2020 ◽  
pp. 108-115 ◽  
Author(s):  
Vladimir P. Budak ◽  
Anton V. Grimaylo

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.


2016 ◽  
Vol 136 (12) ◽  
pp. 522-531
Author(s):  
Yuta Ideguchi ◽  
Yuki Uranishi ◽  
Shunsuke Yoshimoto ◽  
Yoshihiro Kuroda ◽  
Masataka Imura ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 (4) ◽  
pp. 142-1-142-5
Author(s):  
Hiroaki Yano ◽  
Tomohiro Yendo
Keyword(s):  

2020 ◽  
Vol 2020 (2) ◽  
pp. 100-1-100-6
Author(s):  
Takuya Omura ◽  
Hayato Watanabe ◽  
Naoto Okaichi ◽  
Hisayuki Sasaki ◽  
Masahiro Kawakita

We enhanced the resolution characteristics of a threedimensional (3D) image using time-division multiplexing methods in a full-parallax multi-view 3D display. A time-division light-ray shifting (TDLS) method is proposed that uses two polarization gratings (PGs). As PG changes the diffraction direction of light rays according to the polarization state of the incident light, this method can shift light rays approximately 7 mm in a diagonal direction by switching the polarization state of incident light and adjusting the distance between the PGs. We verified the effect on the characteristics of 3D images based on the extent of the shift. As a result, the resolution of a 3D image with depth is improved by shifting half a pitch of a multi-view image using the TDLS method, and the resolution of the image displayed near the screen is improved by shifting half a pixel of each viewpoint image with a wobbling method. These methods can easily enhance 3D characteristics with a small number of projectors.


Sign in / Sign up

Export Citation Format

Share Document