Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared

2018 ◽  
Vol 43 (7) ◽  
pp. 1503 ◽  
Author(s):  
Yafei Meng ◽  
Chunhui Zhu ◽  
Yao Li ◽  
Xiang Yuan ◽  
Faxian Xiu ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Liu ◽  
Ming Yang ◽  
Jiangwei Zhang ◽  
Mingliang Yang ◽  
Jun Wang ◽  
...  

As a typical three-dimensional Dirac semimetal (3D DSM), Cd3As2 possess ultrahigh carrier mobility, high level of full spectral absorption, fast electron transmission speed, and high photocurrent response, which enable wide applications in infrared photodetector. However, the large dark current of the detector based on Cd3As2 thin film limits the application of the small current response. Hence, we demonstrated heterojunction photodetectors based on n-type 3D DSM Cd3As2 (pristine and Zn doped) and p-type organic (PbPc) by depositing PbPc thin film on Cd3As2 (pristine and Zn doped) thin film using thermal deposition method. These photodetectors can detect the radiation wavelength from 405 to 1,550 nm at room temperature. It is remarkable that this thin film heterojunction photodetector exhibits high detectivity (3.95 × 1011 Jones) and fast response time (160 μs) under bias voltage, which is significantly improved vs. that of Cd3As2-based devices. The excellent performances are attributed to the strong built-in electric field at the interface of p-n junction, which is beneficial for efficient photocarriers collection and transportation. These results show that DSM/organic thin film heterojunction has excellent performance in the application of photodetectors. By combining 3D DSM with organic to form heterojunction, it provides a feasible solution for high-performance photodetectors.


2019 ◽  
Vol 31 (13) ◽  
pp. 1056-1059 ◽  
Author(s):  
Rui Xu ◽  
Sheng Wang ◽  
Yao Li ◽  
Hanning Chen ◽  
Tong Tong ◽  
...  

2017 ◽  
Vol 96 (23) ◽  
Author(s):  
Chang Liu ◽  
Jack Hellerstedt ◽  
Mark T. Edmonds ◽  
Michael S. Fuhrer

2017 ◽  
Vol 31 (34) ◽  
pp. 1750282 ◽  
Author(s):  
Liqiang Feng ◽  
R. S. Castle ◽  
Yi Li

The generation of the high-order harmonic and the attosecond pulse from He atom driven by the near-infrared (NIR) field combined with the XUV pulse has been theoretically investigated by solving the three-dimensional time-dependent Schrödinger equation. The results show that by properly adding the XUV pulse into the NIR field, (i) not only the harmonic yield is enhanced, caused by the laser-induced excited state effect; but also the multi-cutoff extension of the harmonics can be found, caused by the absorption of the extra XUV photons during its recombination process. (ii) With the introduction of the XUV pulse, the frequency modulation of the high-order harmonic generation (HHG) can be found and controlled. (iii) By directly superposing the harmonics in the cutoff region, two isolated XUV pulses with the durations of 150 as can be obtained.


Author(s):  
D.W. Andrews ◽  
F.P. Ottensmeyer

Shadowing with heavy metals has been used for many years to enhance the topological features of biological macromolecular complexes. The three dimensional features present in directionaly shadowed specimens often simplifies interpretation of projection images provided by other techniques. One difficulty with the method is the relatively large amount of metal used to achieve sufficient contrast in bright field images. Thick shadow films are undesirable because they decrease resolution due to an increased tendency for microcrystalline aggregates to form, because decoration artefacts become more severe and increased cap thickness makes estimation of dimensions more uncertain.The large increase in contrast provided by the dark field mode of imaging allows the use of shadow replicas with a much lower average mass thickness. To form the images in Fig. 1, latex spheres of 0.087 μ average diameter were unidirectionally shadowed with platinum carbon (Pt-C) and a thin film of carbon was indirectly evaporated on the specimen as a support.


2015 ◽  
Vol 6 (1) ◽  
pp. 19-29 ◽  
Author(s):  
G. Bitelli ◽  
P. Conte ◽  
T. Csoknyai ◽  
E. Mandanici

The management of an urban context in a Smart City perspective requires the development of innovative projects, with new applications in multidisciplinary research areas. They can be related to many aspects of city life and urban management: fuel consumption monitoring, energy efficiency issues, environment, social organization, traffic, urban transformations, etc. Geomatics, the modern discipline of gathering, storing, processing, and delivering digital spatially referenced information, can play a fundamental role in many of these areas, providing new efficient and productive methods for a precise mapping of different phenomena by traditional cartographic representation or by new methods of data visualization and manipulation (e.g. three-dimensional modelling, data fusion, etc.). The technologies involved are based on airborne or satellite remote sensing (in visible, near infrared, thermal bands), laser scanning, digital photogrammetry, satellite positioning and, first of all, appropriate sensor integration (online or offline). The aim of this work is to present and analyse some new opportunities offered by Geomatics technologies for a Smart City management, with a specific interest towards the energy sector related to buildings. Reducing consumption and CO2 emissions is a primary objective to be pursued for a sustainable development and, in this direction, an accurate knowledge of energy consumptions and waste for heating of single houses, blocks or districts is needed. A synoptic information regarding a city or a portion of a city can be acquired through sensors on board of airplanes or satellite platforms, operating in the thermal band. A problem to be investigated at the scale A problem to be investigated at the scale of the whole urban context is the Urban Heat Island (UHI), a phenomenon known and studied in the last decades. UHI is related not only to sensible heat released by anthropic activities, but also to land use variations and evapotranspiration reduction. The availability of thermal satellite sensors is fundamental to carry out multi-temporal studies in order to evaluate the dynamic behaviour of the UHI for a city. Working with a greater detail, districts or single buildings can be analysed by specifically designed airborne surveys. The activity has been recently carried out in the EnergyCity project, developed in the framework of the Central Europe programme established by UE. As demonstrated by the project, such data can be successfully integrated in a GIS storing all relevant data about buildings and energy supply, in order to create a powerful geospatial database for a Decision Support System assisting to reduce energy losses and CO2 emissions. Today, aerial thermal mapping could be furthermore integrated by terrestrial 3D surveys realized with Mobile Mapping Systems through multisensor platforms comprising thermal camera/s, laser scanning, GPS, inertial systems, etc. In this way the product can be a true 3D thermal model with good geometric properties, enlarging the possibilities in respect to conventional qualitative 2D images with simple colour palettes. Finally, some applications in the energy sector could benefit from the availability of a true 3D City Model, where the buildings are carefully described through three-dimensional elements. The processing of airborne LiDAR datasets for automated and semi-automated extraction of 3D buildings can provide such new generation of 3D city models.


Sign in / Sign up

Export Citation Format

Share Document