Active terahertz beam deflection and nonreciprocal spin chirality selection based on magneto-optical P-B metasurface with stacked-graphene layers

2022 ◽  
Author(s):  
Zhao Dan ◽  
zhiyu tan ◽  
Huijun Zhao ◽  
Fei Fan ◽  
Shengjiang Chang
Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
K. Ishizuka ◽  
K. Shirota

In a conventional alignment for high-resolution electron microscopy, the specimen point imaged at the viewing-screen center is made dispersion-free against a voltage fluctuation by adjusting the incident beam direction using the beam deflector. For high-resolution works the voltage-center alignment is important, since this alignment reduces the chromatic aberration. On the other hand, the coma-free alignment is also indispensable for high-resolution electron microscopy. This is because even a small misalignment of the incident beam direction induces wave aberrations and affects the appearance of high resolution electron micrographs. Some alignment procedures which cancel out the coma by changing the incident beam direction have been proposed. Most recently, the effect of a three-fold astigmatism on the coma-free alignment has been revealed, and new algorithms of coma-free alignment have been proposed.However, the voltage-center and the coma-free alignments as well as the current-center alignment in general do not coincide to each other because of beam deflection due to a leakage field within the objective lens, even if the main magnetic-field of the objective lens is rotationally symmetric. Since all the proposed procedures for the coma-free alignment also use the same beam deflector above the objective lens that is used for the voltage-center alignment, the coma-free alignment is only attained at the sacrifice of the voltage-center alignment.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2012 ◽  
Vol 182 (11) ◽  
pp. 1223-1228 ◽  
Author(s):  
L.A. Falkovsky
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


Nanophotonics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1529-1540
Author(s):  
Xianwu Xiu ◽  
Liping Hou ◽  
Jing Yu ◽  
Shouzhen Jiang ◽  
Chonghui Li ◽  
...  

Abstract Highly efficient plasmon-driven catalysis and excellent surface-enhanced Raman spectroscopy (SERS) performance are proportional to the square of the local electromagnetic field (hot spot). However, a proven way to realize the enhancement in intensity and density of “hot spot” still needs to be investigated. Here, we report on multilayered Ag nanoparticle (Ag NP)/graphene coupled to an underlying Cu film system (MAgNP-CuF) which can be used as an effective SERS substrates realizing ultra-sensitive detection for toxic molecules and in situ monitoring the plasmon-driven reaction for p-nitrothiophenol (PNTP) to p,p′-dimercaptobenzene (DMAB) conversion. The mechanism of ultra-sensitive SERS response and catalytic reaction is investigated via Ag NP/graphene layer-dependent experiments combined with theoretical simulations. The research found that the intensity and density of “hot spot” can be effectively manipulated by the number of plasmonic layers, and the bottom Cu film could also reflect the scattered and excitation beam and would further enhance the Raman signals. Moreover, the MAgNP-CuF exhibits outstanding performance in stability and reproducibility. We believe that this concept of multilayered plasmonic structures would be widely used not only in the field of SERS but also in the wider research in photocatalysis.


2021 ◽  
Vol 125 (6) ◽  
pp. 1604-1610
Author(s):  
Hossein Jalali ◽  
Erfan Lotfi ◽  
Radha Boya ◽  
Mehdi Neek-Amal

Sign in / Sign up

Export Citation Format

Share Document