scholarly journals Asymmetric excitations of toroidal dipole resonance and magnetic dipole quasi-bound state in the continuum in an all-dielectric metasurface

2021 ◽  
Author(s):  
Bin Li ◽  
Jin Yao ◽  
Han Zhu ◽  
Guoxiong Cai ◽  
Qing Huo Liu
2020 ◽  
pp. 2000263
Author(s):  
Diego R. Abujetas ◽  
Ángela Barreda ◽  
Fernando Moreno ◽  
Amelie Litman ◽  
Jean‐Michel Geffrin ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 1295-1307
Author(s):  
Yulin Wang ◽  
Zhanghua Han ◽  
Yong Du ◽  
Jianyuan Qin

Abstract Toroidal dipole (TD) with weak coupling to the electromagnetic fields offers tremendous potential for advanced design of photonic devices. However, the excitation of high quality (Q) factor TD resonances in these devices is challenging. Here, we investigate ultrahigh-Q factor TD resonances at terahertz frequencies arising from a distortion of symmetry-protected bound states in the continuum (BIC) in all-dielectric metasurface consisting of an array of high-index tetramer clusters. By elaborately arranging the cylinders forming an asymmetric cluster, two distinct TD resonances governed by BIC are excited and identified. One is distinguished as intracluster TD mode that occurs in the interior of tetramer cluster, and the other one is intercluster TD mode that arises from the two neighboring clusters. Such TD resonances can be turned into ultrahigh-Q leaky resonances by controlling the asymmetry of cluster. The low-loss TD resonances with extremely narrow linewidth are very sensitive to the change in the refractive index of the surrounding media, achieving ultrahigh sensitivity level of 489 GHz/RIU. These findings will open up an avenue to develop ultrasensitive photonic sensor in the terahertz regime.


2020 ◽  
Vol 8 (12) ◽  
pp. A91 ◽  
Author(s):  
Leran Lu ◽  
Quynh Le-Van ◽  
Lydie Ferrier ◽  
Emmanuel Drouard ◽  
Christian Seassal ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Diego R. Abujetas ◽  
Ángela Barreda ◽  
Fernando Moreno ◽  
Juan J. Sáenz ◽  
Amelie Litman ◽  
...  

Abstract Bound states in the continuum (BICs) are ubiquitous in many areas of physics, attracting special interest for their ability to confine waves with infinite lifetimes. Metasurfaces provide a suitable platform to realize them in photonics; such BICs are remarkably robust, being however complex to tune in frequency-wavevector space. Here we propose a scheme to engineer BICs and quasi-BICs with single magnetic-dipole resonance meta-atoms. Upon changing the orientation of the magnetic-dipole resonances, we show that the resulting quasi-BICs, emerging from the symmetry-protected BIC at normal incidence, become transparent for plane-wave illumination exactly at the magnetic-dipole angle, due to a Brewster-like effect. While yielding infinite Q-factors at normal incidence (canonical BIC), these are termed Brewster quasi-BICs since a transmission channel is always allowed that slightly widens resonances at oblique incidences. This is demonstrated experimentally through reflectance measurements in the microwave regime with high-refractive-index mm-disk metasurfaces. Such Brewster-inspired configuration is a plausible scenario to achieve quasi-BICs throughout the electromagnetic spectrum inaccessible through plane-wave illumination at given angles, which could be extrapolated to other kind of waves.


2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Yaozu Xie ◽  
Zhanyuan Zhang ◽  
Ye Lin ◽  
Tianhua Feng ◽  
Yi Xu

2020 ◽  
Vol 51 (5) ◽  
pp. 979-987 ◽  
Author(s):  
I. Filikhin ◽  
B. Vlahovic

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 998
Author(s):  
Diego R. Abujetas ◽  
José A. Sánchez-Gil

Resonant optical modes arising in all-dielectric metasurfaces have attracted much attention in recent years, especially when so-called bound states in the continuum (BICs) with diverging lifetimes are supported. With the aim of studying theoretically the emergence of BICs, we extend a coupled electric and magnetic dipole analytical formulation to deal with the proper metasurface Green function for the infinite lattice. Thereby, we show how to excite metasurface BICs, being able to address their near-field pattern through point-source excitation and their local density of states. We apply this formulation to fully characterize symmetry-protected BICs arising in all-dielectric metasurfaces made of Si nanospheres, revealing their near-field pattern and local density of states, and, thus, the mechanisms precluding their radiation into the continuum. This formulation provides, in turn, an insightful and fast tool to characterize BICs (and any other leaky/guided mode) near fields in all-dielectric (and also plasmonic) metasurfaces, which might be especially useful for the design of planar nanophotonic devices based on such resonant modes.


Sign in / Sign up

Export Citation Format

Share Document