Analysis of Biologically Active Constituents in Centella asiatica by Microwave-Assisted Extraction Combined with LC–MS

2009 ◽  
Vol 70 (3-4) ◽  
pp. 431-438 ◽  
Author(s):  
Yan Shen ◽  
Aili Liu ◽  
Mingde Ye ◽  
Li Wang ◽  
Junhui Chen ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 215 ◽  
Author(s):  
Gualtiero Milani ◽  
Francesca Curci ◽  
Maria Maddalena Cavalluzzi ◽  
Pasquale Crupi ◽  
Isabella Pisano ◽  
...  

Bamboo is a well-known medicinal plant in Southeast Asia that recently has attracted attention for its high polyphenol content and its medical and nutraceutical applications. In this work, polyphenols have been recovered for the first time by microwave-assisted extraction (MAE) from an unusual Italian cultivar of Phyllostachys pubescens bamboo shoots. The effects of three independent variables, such as extraction time, temperature, and solid/liquid ratio, on polyphenol recovery yield were investigated and successfully optimized through the response surface methodology. We demonstrated that MAE is an excellent polyphenols extraction technique from bamboo shoots because the total phenolic content obtained under microwave irradiation optimal conditions (4 min at 105 °C with 6.25 mg/mL ratio) was about eight-fold higher than that obtained with the conventional extraction method. Furthermore, higher total flavonoid content was also obtained under MAE. Consistent with these results, MAE enhanced the extract antioxidant properties with significant improved DPPH, ABTS, and FRAP scavenging ability. Therefore, this innovative extraction process enhances the recovery of biologically active compounds from Phyllostachys pubescens bamboo shoots with a dramatic reduction of time and energy consumption, which paves the way for its industrial application in functional food production.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8741-8750
Author(s):  
Suppalak Phaisan ◽  
Fonthip Makkliang ◽  
Waraporn Putalun ◽  
Seiichi Sakamoto ◽  
Gorawit Yusakul

This study outlines a green process for Centella asiatica (L.) Urb. (CA) extraction.


2018 ◽  
pp. 169-177 ◽  
Author(s):  
Денис (Denis) Игоревич (Igorevich) Прокопчук (Prokopchuk) ◽  
Олег (Oleg) Игоревич (Igorevich) Покровский (Pokrovskiy) ◽  
Ольга (Ol'ga) Олеговна (Olegovna) Паренаго (Parenago) ◽  
Саида (Saida) Амирановна (Аmiranovna) Багателия (Bagatelia) ◽  
Алхас (Аlkhas) Анатольевич (Аnatol'evich) Марколия (Markolia) ◽  
...  

Along with traditional methods for processing aroma plants, such as steam distillation or extraction with organic solvents, novel alternative approaches are developed which provide the means for a more effective isolation of biologically active compounds from plant matrices and simultaneously possess ecological attractiveness. Supercritical fluid extraction and microwave-assisted extraction can be attributed to such approaches. Their implementation into routine practice is partially hampered by somewhat vague understanding of applicability areas of these methods as well as by the lack of knowledge on the influence of process parameters on the result. In this work, we performed a comparison of the applicability of supercritical fluid and microwave-assisted extraction techniques for the isolation of biologically active compounds from leaves of Laurus nobilis L. It was shown that microwave-assisted extraction allows obtaining oil containing only volatile terpene components. Supercritical fluid extraction allows isolation of not only volatile terpenes from laurel leaves, but a broader spectrum of compounds including eugenol derivatives, phytosteroids and tocopherols. Qualitative composition of supercritical fluid extracts is virtually independent on process parameters, only quantitative differences in component proportions are registered.


2010 ◽  
Vol 30 (5) ◽  
pp. 567-568
Author(s):  
Xiao-li LI ◽  
Ming-yuan ZHANG ◽  
Wei-quan ZHAO ◽  
Man Li ◽  
Hai-ying TENG ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 142-145 ◽  
Author(s):  
Simone Carradori ◽  
Luisa Mannina ◽  
Federica De Cosmi ◽  
Tamara Beccarini ◽  
Daniela Secci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document