Effective Normalization Technique for Correction of Matrix Effects in Laser-Induced Breakdown Spectroscopy Detection of Magnesium in Powdered Samples

2002 ◽  
Vol 56 (4) ◽  
pp. 433-436 ◽  
Author(s):  
S. I. Gornushkin ◽  
I. B. Gornushkin ◽  
J. M. Anzano ◽  
B. W. Smith ◽  
J. D. Winefordner

The goal of this research was to investigate the influence of the matrix on the laser-induced spectroscopy of magnesium. Powdered samples were used and were presented to the measurement as thin distributions on adhesive tape. A wide range of NIST certified reference materials were used as samples. With careful sample preparation and correction for sample surface density on the tape (determined by weighing), reasonable consistency in the Mg signal intensity was obtained regardless of sample matrix. Relative error of ∼10% and a precision of 10–20% were obtained for the determination of Mg in several certified samples.

1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


Author(s):  
Ji Chen ◽  
Kaiping Zhan ◽  
Qingzhou Li ◽  
Zhiyang Tang ◽  
Chenwei Zhu ◽  
...  

The quantification accuracy of laser-induced breakdown spectroscopy was limited due to matrix effects. In this work, a method named unsupervised-clustering-based quantification (UCQ) was proposed to reduce the matrix effects by...


2008 ◽  
Vol 62 (10) ◽  
pp. 1137-1143 ◽  
Author(s):  
Dário Santos ◽  
Ricardo Elgul Samad ◽  
Lílian Cristina Trevizan ◽  
Anderson Zanardi de Freitas ◽  
Nilson Dias Vieira ◽  
...  

The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 nm and producing a train of 840 μJ and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)–echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mahwish Bukhari ◽  
M. Ali Awan ◽  
Ishtiaq A. Qazi ◽  
M. Anwar Baig

This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients,R2in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium.


1996 ◽  
Vol 50 (7) ◽  
pp. 880-884 ◽  
Author(s):  
Andrew V. Pakhomov ◽  
William Nichols ◽  
Jacek Borysow

Time-resolved laser-induced breakdown spectroscopy was applied for quantitative measurement of lead content in concrete at levels down to 10 ppm. The breakdown was formed at the sample surface by a Q-switched ND:YAG laser operating at a 1.06-μm wavelength and a repetition rate of 10 Hz. Contamination levels were inferred from the ratio of the integrated emission line of lead to a known reference line of the matrix. The lead contamination can be determined on an absolute scale down to 10 ppm at an optimum delay time of 3.0 μs. These results were derived from analysis of the temporal evolution of the calibration function within a 0.1- to 19.0-μs time range. The calibration function exhibits no dependence on the incident laser pulse energy, which was varied from 250 to 400 mJ.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1379
Author(s):  
Nina Rethfeldt ◽  
Pia Brinkmann ◽  
Daniel Riebe ◽  
Toralf Beitz ◽  
Nicole Köllner ◽  
...  

The numerous applications of rare earth elements (REE) has lead to a growing global demand and to the search for new REE deposits. One promising technique for exploration of these deposits is laser-induced breakdown spectroscopy (LIBS). Among a number of advantages of the technique is the possibility to perform on-site measurements without sample preparation. Since the exploration of a deposit is based on the analysis of various geological compartments of the surrounding area, REE-bearing rock and soil samples were analyzed in this work. The field samples are from three European REE deposits in Sweden and Norway. The focus is on the REE cerium, lanthanum, neodymium and yttrium. Two different approaches of data analysis were used for the evaluation. The first approach is univariate regression (UVR). While this approach was successful for the analysis of synthetic REE samples, the quantitative analysis of field samples from different sites was influenced by matrix effects. Principal component analysis (PCA) can be used to determine the origin of the samples from the three deposits. The second approach is based on multivariate regression methods, in particular interval PLS (iPLS) regression. In comparison to UVR, this method is better suited for the determination of REE contents in heterogeneous field samples.


2005 ◽  
Vol 59 (3) ◽  
pp. 340-347 ◽  
Author(s):  
Robert L. Green ◽  
Mark D. Mowery ◽  
Julie A. Good ◽  
John P. Higgins ◽  
Steven M. Arrivo ◽  
...  

Near-infrared (NIR) spectroscopy has become well established in both the pharmaceutical arena and other areas as a useful technique for rapid quantitative analysis of solid materials. Though laser-induced breakdown spectroscopy (LIBS) has not been widely applied in the pharmaceutical industry, the technique has been used for rapid quantitative analysis of solids in many other applications. One analysis amenable to each technique is the determination of magnesium stearate in solids during the lubrication blending unit operation of pharmaceutical processing. A comparative study of the utility of these two techniques for this application will be presented. Necessary sample preparations and the extent and type of matrix effects will be discussed. Additionally, it will be shown that NIR provides better accuracy and precision than LIBS with the experimental parameters used; however, LIBS showed superior selectivity as it was demonstrated to be more robust to sample matrix perturbations. Examples of blending applications will also be presented.


Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 66 ◽  
Author(s):  
Xuebin Xu ◽  
Changwen Du ◽  
Fei Ma ◽  
Yazhen Shen ◽  
Jianmin Zhou

Accurate management of soil nutrients and fast and simultaneous acquisition of soil properties are crucial in the development of sustainable agriculture. However, the conventional methods of soil analysis are generally labor-intensive, environmentally unfriendly, as well as time- and cost-consuming. Laser-induced breakdown spectroscopy (LIBS) is a “superstar” technique that has yielded outstanding results in the elemental analysis of a wide range of materials. However, its application for analysis of farmland soil faces the challenges of matrix effects, lack of large-scale soil samples with distinct origin and nature, and problems with simultaneous determination of multiple soil properties. Therefore, LIBS technique, in combination with partial least squares regression (PLSR), was applied to simultaneously determinate soil pH, cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) in 200 soils from different farmlands in China. The prediction performances of full spectra and characteristic lines were evaluated and compared. Based on full spectra, the estimates of pH, CEC, SOM, TN, and TK achieved excellent prediction abilities with the residual prediction deviation (RPDV) values > 2.0 and the estimate of TP featured good performance with RPDV value of 1.993. However, using characteristic lines only improved the predicted accuracy of SOM, but reduced the prediction accuracies of TN, TP, and TK. In addition, soil AP and AK were predicted poorly with RPDV values of < 1.4 based on both full spectra and characteristic lines. The weak correlations between conventionally analyzed soil AP and AK and soil LIBS spectra are responsible for the poor prediction abilities of AP and AK contents. Findings from this study demonstrated that the LIBS technique combined with multivariate methods is a promising alternative for fast and simultaneous detection of some properties (i.e., pH and CEC) and nutrient contents (i.e., SOM, TN, TP, and TK) in farmland soils because of the extraordinary prediction performances achieved for these attributes.


Author(s):  
Ran Zhou ◽  
Ke Liu ◽  
Zhiyang Tang ◽  
Zhongqi Hao ◽  
Xiangyou Li ◽  
...  

LIBS assisted by laser-induced fluorescence was introduced to solve the matrix effect and self-absorption effect in the determination of essential micronutrient elements in soil.


Sign in / Sign up

Export Citation Format

Share Document