Compositional and Texture Analysis of Tantalum Thin Films by Energy Dispersive X-Ray Analysis

1973 ◽  
Vol 27 (2) ◽  
pp. 99-102 ◽  
Author(s):  
H. S. deBen ◽  
Barret Broyde

Quantitative measurements of concentrations are given for the phases present in undoped tantalum thin films by the use of energy-dispersive x-ray detectors. This diffraction method can also yield the extent of preferred orientation.

1977 ◽  
Vol 2 (4) ◽  
pp. 243-251 ◽  
Author(s):  
E. Laine ◽  
J. Kivilä ◽  
I. Lähteenmäki

The influence of preferred orientation on integrated x-ray intensities in powder specimen using energy-dispersive diffraction method is investigated. The theory used is based upon examination of the polar axis density distribution. The measurements were carried out using the Schulz technique added with defocusing correction. Experimental results are given for three aluminium powder specimens.


Hyomen Kagaku ◽  
1998 ◽  
Vol 19 (4) ◽  
pp. 259-264
Author(s):  
Kenji ISHIDA ◽  
Toshihisa HORIUCHI ◽  
Kazumi MATSUSHIGE MATSUSHIGE

2004 ◽  
Vol 70 (4-5) ◽  
pp. 611-617 ◽  
Author(s):  
M. Bhattacharya ◽  
M.K. Mukhopadhyay ◽  
S. Pal ◽  
M.K. Sanyal

1981 ◽  
Vol 25 ◽  
pp. 365-371
Author(s):  
Glen A. Stone

This paper presents a new method to measure the thickness of very thin films on a substrate material using energy dispersive x-ray diffractometry. The method can be used for many film-substrate combinations. The specific application to be presented is the measurement of phosphosilicate glass films on single crystal silicon wafers.


1994 ◽  
Vol 9 (8) ◽  
pp. 2133-2137 ◽  
Author(s):  
Hideki Yoshioka

Thin films in the system (1 - x) PbTiO3−xLa2/3TiO3 were prepared by the sol-gel and dip-coating methods. Phases deposited in the films and the lattice parameters as a function of the composition were investigated by the x-ray diffraction method. The solid solutions with a perovskite structure were formed as a single phase with x up to 0.9. For the composition of x = 1.0, metastable La-Ti-O perovskite phase with a small amount of the impurity phase, La2Ti2O7, was obtained. Simulation of x-ray diffraction patterns based on the defect structure model shows that the structure of the La-Ti-O perovskite phase includes randomly distributed cation vacancies at the A-site, namely (La2/3□1/3)TiO3.


Sign in / Sign up

Export Citation Format

Share Document