Texture Analysis of Thin Films and Surface Layers by Low Incidence Angle X-Ray Diffraction

1989 ◽  
pp. 285-292
Author(s):  
J. J. Heizmann ◽  
A. Vadon ◽  
D. Schlatter ◽  
J. Bessières
1988 ◽  
Vol 32 ◽  
pp. 285-292 ◽  
Author(s):  
J. J. Heizmann ◽  
A. Vadon ◽  
D. Schlatter ◽  
J. Bessières

It is necessary to know the orientation of thin surface layers for the electronic industry as well as for different studies on interphases (epitaxy, topotaxy, phase transformation, reactivity of solids).It is difficult to obtain information with a conventional Schulz goniometer (Bragg-Brentano geometry) because of the insufficient amount of diffracting material.


1987 ◽  
pp. 457-464 ◽  
Author(s):  
S. S. Iyengar ◽  
M. W. Santana ◽  
H. Windischmann ◽  
P. Engler

1991 ◽  
Vol 14 ◽  
pp. 127-132
Author(s):  
D. Schlatter ◽  
C. Baltzinger ◽  
A. Tizliouine ◽  
J. J. Heizmann ◽  
C. Burggraf

1986 ◽  
Vol 30 ◽  
pp. 457-464 ◽  
Author(s):  
S. S. Iyengar ◽  
M. W. Santana ◽  
H. Windischmann ◽  
P. Engler

Due to the current high interest in characterizing epitaxially deposited thin films required by the electronics industry as well as the increased attention in elucidating reactions between solid surfaces and the environment (e.g., corrosion), investigators have increased their efforts in developing X-ray procedures for analyzing films and surfaces less than 2 μm thick. For example, an entire session of the 1985 Denver Conference on Applications of X-ray Analysis was devoted to this subject and an excellent review of X-ray diffraction techniques for characterizing thin films was recently published by Segmuller (1). Specific techniques include grazing incidence diffraction (2, 3), double crystal diffraction (3), and the use of the Seemann-Bohlin focusing geometry (4, 5).


2012 ◽  
Vol 01 (03) ◽  
pp. 35-39 ◽  
Author(s):  
Mirtat Bouroushian ◽  
Tatjana Kosanovic

1991 ◽  
Vol 239 ◽  
Author(s):  
J. Tao ◽  
D. Adams ◽  
S. M. Yalisove ◽  
J. C. Bilello

ABSTRACTStress and structure evolution in thin films of sputtered Mo on Si(100) substrates has been studied, as a function of microstructure, by x-ray diffraction, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). Double crystal x-ray diffraction topography (DCDT) has been employed to determine film stress as a function of thickness. High compressive stress, about 1000 MPa, is found for the thinnest Mo film. With increasing film thickness a minimal residual stress level is reached. Low incidence angle x-ray diffraction patterns indicated that crystalline Mo is present even in the thinnest films. Line broadening of the Mo(l10) diffraction peak has shown that the grain dimension is comparable to the film thickness over the range studied. Plan view TEM observations of films less than 20nm demonstrated the presence of continuous film with grain dimensions on the order of film thickness, in good agreement with the x-ray results.


1991 ◽  
Vol 14 ◽  
pp. 181-186 ◽  
Author(s):  
J. J. Heizmann ◽  
D. Schlatter ◽  
A. Vadon ◽  
C. Baltzinger ◽  
J. Bessieres

Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


Sign in / Sign up

Export Citation Format

Share Document