Characterization of Attenuated Total Reflection Infrared Spectral Intensity Variations of Immature and Mature Cotton Fibers by Two-Dimensional Correlation Analysis

2012 ◽  
Vol 66 (2) ◽  
pp. 198-207 ◽  
Author(s):  
Yongliang Liu ◽  
Devron Thibodeaux ◽  
Gary Gamble
2009 ◽  
Vol 63 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Hideyuki Shinzawa ◽  
Shin-Ich Morita ◽  
Kimie Awa ◽  
Mariko Okada ◽  
Isao Noda ◽  
...  

An extension of the two-dimensional (2D) correlation analysis scheme for multi-dimensional perturbation is described. A simple computational form is provided to construct synchronous correlation and disrelation maps for the analysis of microscopic imaging data based on two independent perturbation variables. Sets of time-dependent attenuated total reflection infrared (ATR-IR) spectra of water and cellulose mixtures were collected during the evaporation of water from finely ground cellulose. The system exhibits complex behaviors in response to two independent perturbations, i.e., evaporation time and grinding time. Multiple perturbation 2D analysis reveals a specific difference in the rate of evaporation of water molecules when accompanied by crystallinity changes of cellulose. It identifies subtle differences in the volatility of water, which is related to the crystalline structure of cellulose.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2449
Author(s):  
Marion Baillieul ◽  
Emeline Baudet ◽  
Karine Michel ◽  
Jonathan Moreau ◽  
Petr Němec ◽  
...  

The objective of this study is to demonstrate the successful functionalization of the surface of a chalcogenide infrared waveguide with the ultimate goal of developing an infrared micro-sensor device. First, a polyisobutylene coating was selected by testing its physico-chemical compatibility with a Ge-Sb-Se selenide surface. To simulate the chalcogenide platform infrared sensor, the detection of benzene, toluene, and ortho-, meta- and para-xylenes was efficaciously performed using a polyisobutylene layer spin-coated on 1 and 2.5 µm co-sputtered selenide films of Ge28Sb12Se60 composition deposited on a zinc selenide prism used for attenuated total reflection spectroscopy. The thickness of the polymer coating was optimized by attenuated total reflection spectroscopy to achieve the highest possible attenuation of water absorption while maintaining the diffusion rate of the pollutant through the polymer film compatible with the targeted in situ analysis. Then, natural water, i.e., groundwater, wastewater, and seawater, was sampled for detection measurement by means of attenuated total reflection spectroscopy. This study is a valuable contribution concerning the functionalization by a hydrophobic polymer compatible with a chalcogenide optical sensor designed to operate in the mid-infrared spectral range to detect in situ organic molecules in natural water.


Sign in / Sign up

Export Citation Format

Share Document