scholarly journals Correction: Structural Characterization of the Complex of SecB and Metallothionein-Labeled proOmpA by Cryo-Electron Microscopy

Author(s):  
Qiang Zhou ◽  
Shan Sun ◽  
Phang Tai ◽  
Sen-Fang Sui
2015 ◽  
Vol 32 (3) ◽  
pp. 436-453 ◽  
Author(s):  
Kira J. Weissman

This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47015 ◽  
Author(s):  
Qiang Zhou ◽  
Shan Sun ◽  
Phang Tai ◽  
Sen-Fang Sui

2018 ◽  
Vol 4 (9) ◽  
pp. eaat7459 ◽  
Author(s):  
Rui Zhu ◽  
Longfa Xu ◽  
Qingbing Zheng ◽  
Yanxiang Cui ◽  
Shaowei Li ◽  
...  

Coxsackievirus A10 (CVA10) recently emerged as a major pathogen of hand, foot, and mouth disease and herpangina in children worldwide, and lack of a vaccine or a cure against CVA10 infections has made therapeutic antibody identification a public health priority. By targeting a local isolate, CVA10-FJ-01, we obtained a potent antibody, 2G8, against all three capsid forms of CVA10. We show that 2G8 exhibited both 100% preventive and 100% therapeutic efficacy against CVA10 infection in mice. Comparisons of the near-atomic cryo–electron microscopy structures of the three forms of CVA10 capsid and their complexes with 2G8 Fab reveal that a single Fab binds a border region across the three capsid proteins (VP1 to VP3) and explain 2G8’s remarkable cross-reactivities against all three capsid forms. The atomic structures of this first neutralizing antibody of CVA10 should inform strategies for designing vaccines and therapeutics against CVA10 infections.


2019 ◽  
Vol 25 (4) ◽  
pp. 2744-2750
Author(s):  
Ekaterina Karteva ◽  
◽  
Neshka Manchorova-Veleva ◽  
Zhelyazko Damyanov ◽  
Teodora Karteva ◽  
...  

Author(s):  
Toshiki Yamada ◽  
Eric E. Figueroa ◽  
Jerod S. Denton ◽  
Kevin Strange

Swelling-activated VRACs are heterohexameric channels comprising LRRC8A and at least one other LRRC8 paralog. Cryo-electron microscopy (EM) structures of non-native LRRC8A and LRRC8D homohexamers have been described. We demonstrate here that LRRC8A homohexamers poorly recapitulate VRAC functional properties. Unlike VRACs, LRRC8A channels heterologously expressed in Lrr8c-/- HCT116 cells are poorly activated by low intracellular ionic strength (µ) and insensitive to cell swelling with normal µ. Combining low µ with swelling modestly activates LRRC8A allowing characterization of pore properties. VRACs are strongly inhibited by 10 mM DCPIB in a voltage-independent manner. In contrast, DCPIB block of LRRC8A is weak and voltage sensitive. Cryo-EM structures indicate that DCPIB block is dependent on arginine 103. Consistent with this, LRRC8A R103F mutants are insensitive to DCPIB. However, a LRRC8 chimeric channel in which R103 is replaced by a leucine at the homologous position is inhibited ~90% by 10 mM DCPIB in a voltage-independent manner. Coexpression of LRRC8A and LRRC8C gives rise to channels with DCPIB sensitivity that is strongly µ-dependent. At normal intracellular µ, LRRC8A+LRRC8C heterohexamers exhibit strong, voltage-independent DCPIB block that is insensitive to R103F. DCPIB inhibition is greatly reduced and exhibits voltage dependence with low intracellular µ. The R103F mutation has no effect on maximal DCPIB inhibition but eliminates voltage-dependence under low µ conditions. Our findings demonstrate that the LRRC8A cryo-EM structure and the use of heterologously expressed LRRC8 heterohexameric channels pose significant limitations for VRAC mutagenesis-based structure-function analysis. Native VRAC function is most closely mimicked by chimeric LRRC8 homohexameric channels.


2007 ◽  
Vol 436 (1-2) ◽  
pp. 396-399 ◽  
Author(s):  
K. Yubuta ◽  
T. Sato ◽  
A. Nomura ◽  
K. Haga ◽  
T. Shishido

Author(s):  
Lucía Quintana-Gallardo ◽  
Moisés Maestro-López ◽  
Jaime Martín-Benito ◽  
Miguel Marcilla ◽  
Daniel Rutz ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1656
Author(s):  
Jaroslaw Jan Jasinski ◽  
Lukasz Kurpaska ◽  
Tadeusz Fraczek ◽  
Malgorzata Lubas ◽  
Maciej Sitarz

The paper presents the structural characterization of γ′-Fe4N nitrides produced by active screen plasma nitriding (ASPN) processes. Experiments were performed on the Fe-Armco model material at 693, 773, and 853 K for 6 h. Investigation of the properties of the substrate was realized using scanning electron microscopy (SEM, SEM–EBSD/Kikuchi lines), energy-filtered transmission electron microscopy (TEM-EFTEM), X-ray diffraction (GID, grazing incidence diffraction, micro-XRD), and secondary ion mass spectroscopy (SIMS). Results have confirmed that the γ′-Fe4N nitrides’ structure and morphology depend considerably on the nitriding process’s plasma conditions and cooling rate. In addition to that, γ′-Fe4N nitrides’ formation can be correlated with the surface layer saturation mechanism and recombination effect. It has been shown that the γ′-Fe4N structure depends considerably on several phenomena that occur in the diffusive layer (e.g., top layer decomposition, nitrogen, and carbon atoms’ migration). Our research proves that the nitrogen concentration gradient is a driving force of nitrogen migration atoms during the recombination of γ′-Fe4N nitrides. Finally, realized processes have allowed us to optimize active screen plasma nitriding to produce a surface layer of fine nitrides.


Sign in / Sign up

Export Citation Format

Share Document