scholarly journals Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

PLoS Biology ◽  
2015 ◽  
Vol 13 (1) ◽  
pp. e1002048 ◽  
Author(s):  
Szu-Chieh Mei ◽  
Charles Brenner
2019 ◽  
Vol 21 (1) ◽  
pp. 142 ◽  
Author(s):  
Nae-Cherng Yang ◽  
Yu-Hung Cho ◽  
Inn Lee

Calorie restriction can extend lifespan by increasing intracellular nicotinamide adenine dinucleotide (NAD+), thereby upregulating the activity of sirtuins (Caenorhabditis elegans Sir-2.1; human SIRT1). Nicotinic acid (NA) can be metabolized to NAD+; however, the calorie restriction mimetic (CRM) potential of NA is unclear. This study explored the ability and mechanism of NA to extend the lifespan of human Hs68 cells and C. elegans. We found that NA can efficiently increase the intracellular NAD+ levels in Hs68 cells and C. elegans; however, NA was only able to extend the lifespan of C. elegans. The steady-state NAD+ level in C. elegans was approximately 55 μM. When intracellular NAD+ was increased by a mutation of pme-1 (poly (ADP-ribose) metabolism enzyme 1) or by pretreatment with NAD+ in the medium, the lifespan extension ability of NA disappeared. Additionally, the saturating concentration of NAD+ required by SIRT1 was approximately 200 μM; however, the steady-state concentration of NAD+ in Hs68 cells reached up to 460 μM. These results demonstrate that the lifespan extension ability of NA depends on whether the intracellular level of NAD+ is lower than the sirtuin-saturating concentration in Hs68 cells and in C. elegans. Thus, the CRM potential of NA should be limited to individuals with lower intracellular NAD+.


Aging Cell ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 505-514 ◽  
Author(s):  
Mitsuhiro Tsuchiya ◽  
Nick Dang ◽  
Emily O. Kerr ◽  
Di Hu ◽  
Kristan K. Steffen ◽  
...  

2014 ◽  
Vol 111 (32) ◽  
pp. 11727-11731 ◽  
Author(s):  
D. H. E. W. Huberts ◽  
J. Gonzalez ◽  
S. S. Lee ◽  
A. Litsios ◽  
G. Hubmann ◽  
...  

2017 ◽  
Vol 63 (9) ◽  
pp. 806-810
Author(s):  
Paul A. Kirchman ◽  
Nicholas Van Zee

Individual cells of the budding yeast Saccharomyces cerevisiae have a limited replicative potential, referred to as the replicative lifespan. We have found that both the growth rate and average replicative lifespan of S. cerevisiae cells are greatly increased in the presence of a variety of bacteria. The growth and lifespan effects are not observable when yeast are allowed to ferment glucose but are only notable on solid media when yeast are forced to respire due to the lack of a fermentable carbon source. Growth near strains of Escherichia coli containing deletions of genes needed for the production of compounds used for quorum sensing or for the production of the siderophore enterobactin also still induced the lifespan extension in yeast. Furthermore, the bacterially induced increases in growth rate and lifespan occur even across gaps in the growth medium, indicating that the bacteria are influencing the yeast through the action of a volatile compound.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanjun Pan ◽  
Yanan Liu ◽  
Rui Fujii ◽  
Umer Farooq ◽  
Lihong Cheng ◽  
...  

The antiaging benzoquinone-type molecule ehretiquinone was isolated in a previous study as a leading compound from the herbal medicine Onosma bracteatum wall. This paper reports the antiaging effect and mechanism of ehretiquinone by using yeasts, mammal cells, and mice. Ehretiquinone extends not only the replicative lifespan but also the chronological lifespan of yeast and the yeast-like chronological lifespan of mammal cells. Moreover, ehretiquinone increases glutathione peroxidase, catalase, and superoxide dismutase activity and reduces reactive oxygen species and malondialdehyde (MDA) levels, contributing to the lifespan extension of the yeasts. Furthermore, ehretiquinone does not extend the replicative lifespan of Δsod1, Δsod2, Δuth1, Δskn7, Δgpx, Δcat, Δatg2, and Δatg32 mutants of yeast. Crucially, ehretiquinone induces autophagy in yeasts and mice, thereby providing significant evidence on the antiaging effects of the molecule in the mammalian level. Concomitantly, the silent information regulator 2 gene, which is known for its contributions in prolonging replicative lifespan, was confirmed to be involved in the chronological lifespan of yeasts and participates in the antiaging activity of ehretiquinone. These findings suggest that ehretiquinone shows an antiaging effect through antioxidative stress, autophagy, and histone deacetylase Sir2 regulation. Therefore, ehretiquinone is a promising molecule that could be developed as an antiaging drug or healthcare product.


2020 ◽  
Vol 66 (4) ◽  
pp. 813-822
Author(s):  
Ping Liu ◽  
Ethan A. Sarnoski ◽  
Tolga T. Olmez ◽  
Thomas Z. Young ◽  
Murat Acar

Sign in / Sign up

Export Citation Format

Share Document