scholarly journals Saccharomyces cerevisiae displays an increased growth rate and an extended replicative lifespan when grown under respiratory conditions in the presence of bacteria

2017 ◽  
Vol 63 (9) ◽  
pp. 806-810
Author(s):  
Paul A. Kirchman ◽  
Nicholas Van Zee

Individual cells of the budding yeast Saccharomyces cerevisiae have a limited replicative potential, referred to as the replicative lifespan. We have found that both the growth rate and average replicative lifespan of S. cerevisiae cells are greatly increased in the presence of a variety of bacteria. The growth and lifespan effects are not observable when yeast are allowed to ferment glucose but are only notable on solid media when yeast are forced to respire due to the lack of a fermentable carbon source. Growth near strains of Escherichia coli containing deletions of genes needed for the production of compounds used for quorum sensing or for the production of the siderophore enterobactin also still induced the lifespan extension in yeast. Furthermore, the bacterially induced increases in growth rate and lifespan occur even across gaps in the growth medium, indicating that the bacteria are influencing the yeast through the action of a volatile compound.

Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1147-1156 ◽  
Author(s):  
Theodor Hanekamp ◽  
Mary K Thorsness ◽  
Indrani Rebbapragada ◽  
Elizabeth M Fisher ◽  
Corrine Seebart ◽  
...  

Abstract In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 780 ◽  
Author(s):  
Roman Maslanka ◽  
Renata Zadrag-Tecza ◽  
Magdalena Kwolek-Mirek

Saccharomyces cerevisiae yeast cells may generate energy both by fermentation and aerobic respiration, which are dependent on the type and availability of carbon sources. Cells adapt to changes in nutrient availability, which entails the specific costs and benefits of different types of metabolism but also may cause alteration in redox homeostasis, both by changes in reactive oxygen species (ROS) and in cellular reductant molecules contents. In this study, yeast cells devoid of the SOD1 or SOD2 gene and fermentative or respiratory conditions were used to unravel the connection between the type of metabolism and redox status of cells and also how this affects selected parameters of cellular physiology. The performed analysis provides an argument that the source of ROS depends on the type of metabolism and non-mitochondrial sources are an important pool of ROS in yeast cells, especially under fermentative metabolism. There is a strict interconnection between carbon metabolism and redox status, which in turn has an influence on the physiological efficiency of the cells. Furthermore, pyridine nucleotide cofactors play an important role in these relationships.


2002 ◽  
Vol 364 (3) ◽  
pp. 857-862 ◽  
Author(s):  
Katarzyna POTRYKUS ◽  
Sylwia BARAŃSKA ◽  
Alicja WĘGRZYN ◽  
Grzegorz WĘGRZYN

Previous studies indicated during replication of plasmids derived from bacteriophage λ (the so-called λ plasmids), that, once assembled, replication complex can be inherited by one of the two daughter plasmid copies after each replication round, and may function in subsequent replication rounds. It seems that similar processes occur during replication of other DNA molecules, including chromosomes of the yeast Saccharomyces cerevisiae. However, apart from some suggestions based on genetic experiments, composition of the λ heritable replication complex remains unknown. In amino acid-starved Escherichia coli relA mutants, replication of λ plasmid DNA is carried out exclusively by the heritable replication complex as assembly of new complexes is impaired due to inhibition of protein synthesis. Here, using a procedure based on in vivo cross-linking, cell lysis, immunoprecipitation with specific sera, de-cross-linking and PCR analysis, we demonstrate that the λ heritable replication complex consists of O, P, DnaB and, perhaps surprisingly, DnaK proteins.


1993 ◽  
Vol 290 (2) ◽  
pp. 369-374 ◽  
Author(s):  
S Mandrup ◽  
R Jepsen ◽  
H Skøtt ◽  
J Rosendal ◽  
P Højrup ◽  
...  

We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovine ACBP, i.e. the initiating methionine was removed and the following serine residue was N-acetylated. The expression of this protein did not affect the growth rate of the cells. Determination of the yeast acyl-CoA pool size showed a close positive correlation between the ACBP content of the cells and the size of the acyl-CoA pool. Thus ACBP can act as an intracellular acyl-CoA pool former. Possible physiological functions of ACBP in cells are discussed.


2019 ◽  
Vol 20 (20) ◽  
pp. 5212 ◽  
Author(s):  
Maximillian P. M. Soltysiak ◽  
Rebecca S. Meaney ◽  
Samir Hamadache ◽  
Preetam Janakirama ◽  
David R. Edgell ◽  
...  

Conjugation is a bacterial mechanism for DNA transfer from a donor cell to a wide range of recipients, including both prokaryotic and eukaryotic cells. In contrast to conventional DNA delivery techniques, such as electroporation and chemical transformation, conjugation eliminates the need for DNA extraction, thereby preventing DNA damage during isolation. While most established conjugation protocols allow for DNA transfer in liquid media or on a solid surface, we developed a procedure for conjugation within solid media. Such a protocol may expand conjugation as a tool for DNA transfer to species that require semi-solid or solid media for growth. Conjugation within solid media could also provide a more stable microenvironment in which the conjugative pilus can establish and maintain contact with recipient cells for the successful delivery of plasmid DNA. Furthermore, transfer in solid media may enhance the ability to transfer plasmids and chromosomes greater than 100 kbp. Using our optimized method, plasmids of varying sizes were tested for transfer from Escherichia coli to Saccharomyces cerevisiae. We demonstrated that there was no significant change in conjugation frequency when plasmid size increased from 56.5 to 138.6 kbp in length. Finally, we established an efficient PCR-based synthesis protocol to generate custom conjugative plasmids.


2008 ◽  
Vol 10 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Renata Zadrag-Tecza ◽  
Magdalena Kwolek-Mirek ◽  
Grzegorz Bartosz ◽  
Tomasz Bilinski

1993 ◽  
Vol 13 (4) ◽  
pp. 2126-2133 ◽  
Author(s):  
F Stutz ◽  
X C Liao ◽  
M Rosbash

Two highly conserved regions of the 586-nucleotide yeast (Saccharomyces cerevisiae) U1 small nuclear RNA (snRNA) can be mutated or deleted with little or no effect on growth rate: the universally conserved loop II (corresponding to the metazoan A loop) and the yeast core region (X. Liao, L. Kretzner, B. Séraphin, and M. Rosbash, Genes Dev. 4:1766-1774, 1990). To examine the contribution of these regions to U1 small nuclear ribonucleoprotein particle (snRNP) activity, a competitor U1 gene, encoding a nonfunctional U1 snRNA molecule, was introduced into a number of strains carrying a U1 snRNA gene with loop II or yeast core mutations. The presence of the nonfunctional U1 gene lowered the growth rate of these mutant strains but not wild-type strains, consistent with the notion that mutant U1 RNAs are less active than wild-type U1 snRNAs. A detailed analysis of the U1 snRNA levels and half-lives in a number of merodiploid strains suggests that these mutant U1 snRNAs interact with U1 snRNP proteins less well than do their wild-type counterparts. Competition for protein factors during snRNP assembly could account for a number of previous observations in both yeast and mammalian cells.


2019 ◽  
Vol 95 (6) ◽  
pp. 588-592 ◽  
Author(s):  
V. A. Kolesnikov ◽  
Roman Yakushin ◽  
V. A. Brodsky ◽  
E. S. Babusenko ◽  
A. V. Chistolinov

There was investigated the effect of barrier and spark discharge low temperature plasma on water containing the cells of Escherichia coli (Escherichia coli), hay bacillus (Bacillus subtilis) and yeast (Saccharomyces cerevisiae). There was shown a general decline in the concentration of viable microbial cells after the treatment of suspensions. There was especially marked the detrimental effect of the method on the viability of sanitary-indicative coliform bacteria in the water.


Genetics ◽  
1976 ◽  
Vol 82 (2) ◽  
pp. 233-249
Author(s):  
Susan W Liebman ◽  
Fred Sherman

ABSTRACT Strains of the yeast Saccharomyces cerevisiae that contain highly efficient amber (UAG) suppressors grow poorly on nutrient medium, while normal or nearly normal growth rates are observed when these strains lose the suppressors or when the suppressors are mutated to lower efficiencies. The different growth rates account for the accumulation of mutants with lowered efficiencies in cultures of strains with highly efficient amber suppressors. Genetic analyses indicate that one of the mutations with a lowered efficiency of suppression is caused by an intragenic mutation of the amber suppressor. The inhibition of growth caused by excessive suppression is expected to be exacerbated when appropriate suppressors are combined together in haploid cells if two suppressors act with a greater efficiency than a single suppressor. Such retardation of growth is observed with combinations of two UAA (ochre) suppressors (Gilmore 1967) and with combinations of two UAG suppressors when the efficiencies of each of the suppressors are within a critical range. In contrast, combinations of a UAA suppressor and a UAG suppressor do not affect growth rate. Apparently while either excessive UAA or excessive UAG suppression is deleterious to yeast, a moderate level of simultaneous UAA and UAG suppression is not.


Sign in / Sign up

Export Citation Format

Share Document