scholarly journals Computational identification and experimental characterization of preferred downstream positions in human core promoters

2021 ◽  
Vol 17 (8) ◽  
pp. e1009256
Author(s):  
René Dreos ◽  
Anna Sloutskin ◽  
Nati Malachi ◽  
Diana Ideses ◽  
Philipp Bucher ◽  
...  

Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.

2021 ◽  
Author(s):  
René Dreos ◽  
Nati Malachi ◽  
Anna Sloutskin ◽  
Philipp Bucher ◽  
Tamar Juven-Gershon

AbstractMetazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a strict spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.Author summaryTranscription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements have been identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE - containing human promoters have been identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.


2020 ◽  
Author(s):  
Vivekanandan Ramalingam ◽  
Malini Natarajan ◽  
Jeff Johnston ◽  
Julia Zeitlinger

AbstractCore promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this difference affects their tissue-specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active at all stages of development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late-stage Drosophila embryos to analyze the properties of promoter types. Using tissue-specific Pol II ChIP-seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. This difference between promoter types is associated with different chromatin accessibility in ATAC-seq data and different expression characteristics in single-cell RNA data. The results suggest that promoter types have optimized different promoter properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue-specific effector genes have evolved to use two different strategies for their differential expression across tissues.


2021 ◽  
pp. gr.275750.121
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Elisabeth R. Knoll ◽  
Emily Paul ◽  
David Landsman ◽  
...  

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates pre-initiation complex (PIC) assembly, only transiently prior to Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions. However, while Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1∆ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


2019 ◽  
Author(s):  
Wei Fang ◽  
Yi Wen ◽  
Xiangyun Wei

AbstractTissue-specific or cell type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs—core promoters and enhancers—of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.


2004 ◽  
Vol 24 (14) ◽  
pp. 6241-6252 ◽  
Author(s):  
Kristina L. Carroll ◽  
Dennis A. Pradhan ◽  
Josh A. Granek ◽  
Neil D. Clarke ◽  
Jeffry L. Corden

ABSTRACT RNA polymerase II (Pol II) termination is triggered by sequences present in the nascent transcript. Termination of pre-mRNA transcription is coupled to recognition of cis-acting sequences that direct cleavage and polyadenylation of the pre-mRNA. Termination of nonpolyadenylated [non-poly(A)] Pol II transcripts in Saccharomyces cerevisiae requires the RNA-binding proteins Nrd1 and Nab3. We have used a mutational strategy to characterize non-poly(A) termination elements downstream of the SNR13 and SNR47 snoRNA genes. This approach detected two common RNA sequence motifs, GUA[AG] and UCUU. The first motif corresponds to the known Nrd1-binding site, which we have verified here by gel mobility shift assays. We also show that Nab3 protein binds specifically to RNA containing the UCUU motif. Taken together, our data suggest that Nrd1 and Nab3 binding sites play a significant role in defining non-poly(A) terminators. As is the case with poly(A) terminators, there is no strong consensus for non-poly(A) terminators, and the arrangement of Nrd1p and Nab3p binding sites varies considerably. In addition, the organization of these sequences is not strongly conserved among even closely related yeasts. This indicates a large degree of genetic variability. Despite this variability, we were able to use a computational model to show that the binding sites for Nrd1 and Nab3 can identify genes for which transcription termination is mediated by these proteins.


2021 ◽  
Author(s):  
Yavor Hadzhiev ◽  
Lucy Wheatley ◽  
Ledean Cooper ◽  
Federico Ansaloni ◽  
Celina Whalley ◽  
...  

In anamniote embryos the major wave of zygotic genome activation (ZGA) starts during the mid-blastula transition. This major wave of ZGA is facilitated by several mechanisms, including dilution of repressive maternal factors and accumulation of activating transcription factors during the fast cell division cycles preceding the mid-blastula transition. However, a set of genes escape global genome repression and are activated substantially earlier, during what is called, the minor wave of genome activation. While the mechanisms underlying the major wave of genome activation have been studied extensively, the minor wave of genome activation is little understood. In zebrafish the earliest expressed RNA polymerase II (Pol II) transcribed genes are activated in a pair of large transcription bodies depleted of chromatin, abundant in elongating Pol II and nascent RNAs (Hadzhiev et al., 2019; Hilbert et al., 2021). This transcription body includes the miR-430 gene cluster required for maternal mRNA clearance. Here we explored the genomic, chromatin organisation and cis-regulatory mechanisms of the minor wave of genome activation occurring in the transcription body. By long read genome sequencing we identified a remarkable cluster of miR-430 genes with over 300 promoters and spanning 0.6 Mb, which represent the highest promoter density of the genome. We demonstrate that the miR-430 gene cluster is required for the formation of the transcription body and acts as a transcription organiser for minor wave activation of a set of zinc finger genes scattered on the same chromosome arm, which share promoter features with the miR-430 cluster. These promoter features are shared among minor wave genes overall and include the TATA-box and sharp transcription start site profile. Single copy miR-430 promoter transgene reporter experiments indicate the importance of promoter-autonomous mechanisms regulating escape from global repression of the early embryo. These results together suggest that formation of the transcription body in the early embryo is the result of high promoter density coupled to a minor wave-specific core promoter code for transcribing key minor wave ZGA genes, which are required for the overhaul of the transcriptome during early embryonic development.


2020 ◽  
Author(s):  
Minjun Park ◽  
Salvi Singh ◽  
Francisco Jose Grisanti Canozo ◽  
Md. Abul Hassan Samee

AbstractMassively parallel reporter assays (MPRAs) have enabled the study of transcriptional regulatory mechanisms at an unprecedented scale and with high quantitative resolution. However, this realm lacks models that can discover sequence-specific signals de novo from the data and integrate them in a mechanistic way. We present MuSeAM (Multinomial CNNs for Sequence Activity Modeling), a convolutional neural network that overcomes this gap. MuSeAM utilizes multinomial convolutions that directly model sequence-specific motifs of protein-DNA binding. We demonstrate that MuSeAM fits MPRA data with high accuracy and generalizes over other tasks such as predicting chromatin accessibility and prioritizing potentially functional variants.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tingting Zhao ◽  
Irina O Vvedenskaya ◽  
William KM Lai ◽  
Shrabani Basu ◽  
B Franklin Pugh ◽  
...  

In Saccharomyces cerevisiae, RNA Polymerase II (Pol II) selects transcription start sites (TSS) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 basepairs downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.


2005 ◽  
Vol 25 (6) ◽  
pp. 2117-2129 ◽  
Author(s):  
Sohail Malik ◽  
Hwa Jin Baek ◽  
Weizhen Wu ◽  
Robert G. Roeder

ABSTRACT The coactivator complexes TRAP/SMCC and PC2 represent two forms of Mediator. To further understand the implications of the heterogeneity of the cellular Mediator populations for regulation of RNA polymerase II (Pol II) transcription, we used a combination of affinity and conventional chromatographic methods. Our analysis revealed a spectrum of complexes, including some containing significant proportions of Pol II. Interestingly, the subunit composition of the Pol II-associated Mediator population resembled that of PC2 more closely than that of the larger TRAP/SMCC complex. In in vitro transcription assays reconstituted from homogeneous preparations of general transcription factors, Mediator-associated Pol II displayed a greater specific activity (relative to that of standard Pol II) in activator-independent (basal) transcription in addition to the previously described effects of Mediator on activator-dependent transcription. Purified PC2 complex also stimulated basal activity under these conditions. Immobilized template assays in which activator-recruited preinitiation complexes were allowed to undergo one cycle of transcription revealed partial disruption of Mediator that resulted in a PC2-like complex being retained in the scaffold. This result implies that PC2 could originate as a result of a normal cellular process. Our results are thus consistent with a dynamic nature of the Mediator complex and further extend the functional similarities between Saccharomyces cerevisiae and metazoan Mediator complexes.


Sign in / Sign up

Export Citation Format

Share Document