scholarly journals The bHLH-PAS Transcription Factor Dysfusion Regulates Tarsal Joint Formation in Response to Notch Activity during Drosophila Leg Development

PLoS Genetics ◽  
2014 ◽  
Vol 10 (10) ◽  
pp. e1004621 ◽  
Author(s):  
Sergio Córdoba ◽  
Carlos Estella
Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1231-1238 ◽  
Author(s):  
B. Kerber ◽  
I. Monge ◽  
M. Mueller ◽  
P.J. Mitchell ◽  
S.M. Cohen

Flies mutant for the Drosophila homologue of the mammalian transcription factor AP-2 show a severe reduction in leg length and fail to develop joint structures. Presumptive joint cells express dAP-2 in response to Notch signaling. dAP-2 is required for joint cell differentiation and can induce formation of supernumerary joints when misexpressed. Although dAP-2 is expressed only in presumptive joint cells, its activity is required to support cell survival in the entire leg segment. Taken together, our data indicate that dAP-2 is an important mediator of Notch activity in leg development.


Genetics ◽  
2020 ◽  
Vol 216 (4) ◽  
pp. 1137-1152
Author(s):  
Clinton Rice ◽  
Stuart J. Macdonald ◽  
Xiaochen Wang ◽  
Robert E. Ward

Imaginal disc morphogenesis during metamorphosis in Drosophila melanogaster provides an excellent model to uncover molecular mechanisms by which hormonal signals effect physical changes during development. The broad (br) Z2 isoform encodes a transcription factor required for disc morphogenesis in response to 20-hydroxyecdysone, yet how it accomplishes this remains largely unknown. Here, we use functional studies of amorphic br5 mutants and a transcriptional target approach to identify processes driven by br and its regulatory targets in leg imaginal discs. br5 mutants fail to properly remodel their basal extracellular matrix (ECM) between 4 and 7 hr after puparium formation. Additionally, br5 mutant discs do not undergo the cell shape changes necessary for leg elongation and fail to elongate normally when exposed to the protease trypsin. RNA-sequencing of wild-type and br5 mutant leg discs identified 717 genes differentially regulated by br, including a large number of genes involved in glycolysis, and genes that encode proteins that interact with the ECM. RNA interference-based functional studies reveal that several of these genes are required for adult leg formation, particularly those involved in remodeling the ECM. Additionally, br Z2 expression is abruptly shut down at the onset of metamorphosis, and expressing it beyond this time results in failure of leg development during the late prepupal and pupal stages. Taken together, our results suggest that br Z2 is required to drive ECM remodeling, change cell shape, and maintain metabolic activity through the midprepupal stage, but must be switched off to allow expression of pupation genes.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3123-3134 ◽  
Author(s):  
T. Klein ◽  
J.A. Campos-Ortega

The klumpfuss (klu) transcription unit in Drosophila gives rise to two different transcripts of 4.5 and 4.9 kb, both of which encode a putative transcription factor with four zinc-finger motifs of the C2H2 class. Zinc-finger 2–4 are homologous to those of the proteins of the EGR transcription factor family. As in the case of the most divergent member of the family, the Wilms' tumor suppressor gene (WT-1), klu contains an additional zinc finger, which is only distantly related. Loss of klumpfuss function is semilethal and causes a variety of defects in bristles and legs of adults, as well as in mouth hooks and brains of larvae. Analysis of the mutants indicates that klumpfuss is required for proper specification and differentiation of a variety of cells, including the sensory organ mother cells and those of the distal parts of tarsal segments.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Ruth‐Love Damoah ◽  
Nicole Sandoval ◽  
Matthew Shankel ◽  
Charmaine Pira ◽  
Allen Cooper ◽  
...  

Nature ◽  
2005 ◽  
Vol 435 (7040) ◽  
pp. 354-359 ◽  
Author(s):  
Mitsuru Morimoto ◽  
Yu Takahashi ◽  
Maho Endo ◽  
Yumiko Saga

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Nicole Sandoval ◽  
Ruth‐Love Damoah ◽  
Charmaine Pira ◽  
Allen Cooper ◽  
Matthew Shankel ◽  
...  

2021 ◽  
Author(s):  
Manu Beerens ◽  
Jore Van Wauwe ◽  
Sander Craps ◽  
Margo Daems ◽  
KC Ashmita ◽  
...  

ABSTRACTRationaleProper functionality of the circulatory system requires correct arteriovenous (AV) endothelial cell (EC) differentiation. While Notch signaling and its downstream effector Hes- Related Family bHLH Transcription Factor with YRPW Motif (Hey)2 favor arterial specification, transcription factor (TF) chicken ovalbumin upstream transcription factor 2 (Coup-TFII) inhibits canonical Notch activity to induce venous identity. However, transcriptional programs that compete with Coup-TFII to orchestrate arterial specification upstream of Notch remain largely unknown. We identified positive regulatory domain-containing protein (Prdm)16 as an arterial EC- specific TF, but its role during arterial EC specification and development remains unexplored.ObjectiveTo unravel the role of Prdm16 during arterial endothelial lineage specification and artery formation.Methods and ResultsTranscriptomic data of freshly isolated arterial and venous ECs from humans and mice revealed that Prdm16 is exclusively expressed by arterial ECs throughout development. This expression pattern was independent of hemodynamic factors and conserved in zebrafish. Accordingly, loss of prdm16 in zebrafish perturbed AV endothelial specification and caused AV malformations in an EC-autonomous manner. This coincided with reduced canonical Notch activity in arterial ECs and was amplified when prdm16 and notch pathway members were concomitantly knocked down. In vitro studies further indicated that Prdm16 not only amplified Notch signaling, but also physically and functionally interacted with Hey2 to drive proper arterial specification.ConclusionWe showed that Prdm16 plays a pivotal role during arterial development through its physical and functional interaction with canonical Notch. As both Hey2 and Prdm16 have been associated with diverse vascular disorders including migraine and atherosclerosis, Prdm16 represents an attractive new target to treat these vascular disorders.


2021 ◽  
Author(s):  
Lindsay A. Phillips ◽  
Markle L. Atienza ◽  
Jae-Ryeon Ryu ◽  
Pia C. Svendsen ◽  
Lynn K. Kelemen ◽  
...  

AbstractVentral leg patterning in Drosophila is controlled by the expression of the redundant T-box Transcription factors midline (mid) and H15. Here we show that mid represses the Dpp-activated gene Daughters against decapentaplegic (Dad) through a consensus TBE site in the minimal enhancer, Dad13. Mutating the Dad13 DNA sequence results in an increased and broadening of Dad expression. We further demonstrate that the engrailed-homology-1 domain of Mid is critical for regulating the levels of phospho-Mad, a transducer of Dpp-signaling. However, we find that mid does not affect all Dpp-target genes as we demonstrate that brinker (brk) expression is unresponsive to mid. This study further illuminates the interplay between mechanisms involved in determination of cellular fate and the varied roles of mid.Summary statementVentral patterning is controlled in part by the T-box Transcription factor midline blocking Dpp signaling and Dpp-activated genes, though midline does not affect the Dpp-repressed gene brk.


Sign in / Sign up

Export Citation Format

Share Document