scholarly journals Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009385 ◽  
Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A. Hay

Gene drive elements promote the spread of linked traits, providing methods for changing the composition or fate of wild populations. Drive mechanisms that are self-limiting are attractive because they allow control over the duration and extent of trait spread in time and space, and are reversible through natural selection as drive wanes. Self-sustainingCleave and Rescue(ClvR) elements include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene, a tightly linked recoded version of the essential gene resistant to cleavage (theRescue), and a Cargo.ClvRspreads by creating loss-of-function (LOF) conditions in which those withoutClvRdie because they lack functional copies of the essential gene. We use modeling to show that when theRescue-Cargo and one or both components required for LOF allele creation (Cas9 and gRNA) reside at different locations (splitClvR), drive ofRescue-Cargo is self-limiting due to a progressive decrease in Cas9 frequency, and thus opportunities for creation of LOF alleles, as spread occurs. Importantly, drive strength and duration can be extended in a measured manner—which is still self-limiting—by moving the two components close enough to each other that they experience some degree of linkage. With linkage, Cas9 transiently experiences drive by hitchhiking withRescue-Cargo until linkage disequilibrium between the two disappears, a function of recombination frequency and number of generations, creating a novel point of control. We implement splitClvRinDrosophila, with key elements on different chromosomes. Cargo/Rescue/gRNAs spreads to high frequency in a Cas9-dependent manner, while the frequency of Cas9 decreases. These observations show that measured, transient drive, coupled with a loss of future drive potential, can be achieved using the simple toolkit that make upClvRelements—Cas9 and gRNAs and aRescue/Cargo.

Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A Hay

AbstractSelf-limiting gene drive allows control over the spread and fate of linked traits. Cleave and Rescue (ClvR) elements create self-sustaining drive and comprise a DNA sequence-modifying enzyme (Cas9-gRNAs, Cleaver) that disrupts an essential gene, and a tightly linked, uncleavable version of the essential gene (Rescue). ClvR spreads by creating conditions in which those without it die because they lack essential gene function. We show that when ClvR is implemented in a 2-locus format, with key elements – Rescue (and Cargo), and Cas9 and/or gRNAs – located at different genomic positions, spread of the Rescue is self-limiting. Drive strength and duration are determined by a recombination rate-dependent generational clock, providing an important point of control for different ecological and regulatory contexts. We implement 2-locus ClvR in Drosophila. Rescue spreads to high frequency in a Cas9-dependent manner, while the frequency of Cas9 decreases, demonstrating transient drive and loss of future drive potential.


2021 ◽  
Author(s):  
Georg Oberhofer ◽  
Bruce Hay ◽  
Tobin Ivy

One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and gRNAs to disrupt endogenous versions of an essential gene, while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. In consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition-dependent, so too will be the survival of that population. To test this idea we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe). This element spreads to transgene fixation at 23° C, but when populations now dependent on TS-ClvRdbe are shifted to 29° C death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in HEG-based drive, and to bring about suppression and/or killing of specific individuals in response to other stimuli.


2021 ◽  
Vol 118 (49) ◽  
pp. e2107413118
Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A. Hay

One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and guide RNAs (gRNAs) to disrupt endogenous versions of an essential gene while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. As a consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition dependent, so too will be the survival of that population. To test this idea, we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe). This element spreads to transgene fixation at 23 °C, but when populations now dependent on Ts-ClvRdbe are shifted to 29 °C, death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in homing-based drive and to bring about suppression and/or killing of specific individuals in response to other stimuli.


2016 ◽  
Author(s):  
Charleston Noble ◽  
Jason Olejarz ◽  
Kevin M. Esvelt ◽  
George M. Church ◽  
Martin A. Nowak

AbstractThe alteration of wild populations has been discussed as a solution to a number of humanity’s most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, CRISPR gene drives, selfish genetic elements which can spread through populations even if they confer no advantage to their host organism, are rapidly emerging as the most promising approach. But before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature. Toward this aim, we mathematically study the evolutionary dynamics of CRISPR gene drives. We demonstrate that the emergence of drive-resistant alleles presents a major challenge to previously reported constructs, and we show that an alternative design which selects against resistant alleles greatly improves evolutionary stability. We discuss all results in the context of CRISPR technology and provide insights which inform the engineering of practical gene drive systems.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nikolay P Kandul ◽  
Junru Liu ◽  
Jared B Bennett ◽  
John M Marshall ◽  
Omar S Akbari

Homing based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification Home-and-Rescue (HomeR) drive in Drosophila targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal, and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.


2019 ◽  
Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A Hay

AbstractGene drive-based strategies for modifying populations face the problem that genes encoding cargo and the drive mechanism are subject to separation, mutational inactivation, and loss of efficacy. Resilience, an ability to respond to these eventualities in ways that restore population modification with functional genes is needed for long-term success. Here we show that resilience can be achieved through cycles of population modification with “Cleave and Rescue” (ClvR) selfish genetic elements. ClvR comprises a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Cycles of modification can in principal be carried out if two ClvR elements targeting different essential genes are located at the same genomic position, and one of them, ClvRn+1, carries a Rescue transgene from an earlier element, ClvRn. ClvRn+1 should spread within a population of ClvRn, while also bringing about a decrease in its frequency. To test this hypothesis we first show that multiple ClvRs, each targeting a different essential gene, function when located at a common chromosomal position in Drosophila. We then show that when several of these also carry the Rescue from a different ClvR, they spread to transgene fixation in populations fixed for the latter, and at its expense. Therefore, genetic modifications of populations can be overwritten with new content, providing an ongoing point of control.SignificanceGene drive can spread beneficial traits through populations, but will never be a one-shot project in which one genetic element provides all desired modifications, for an indefinitely long time. Here we show that gene drive mediated population modification in Drosophila can be overwritten with new content while eliminating old, using Cleave and Rescue (ClvR) selfish genetic elements. The ability to carry out cycles of modification that create and then leave behind a minimal genetic footprint while entering and exiting a population provides important points of control. It makes possible the replacement of broken elements, upgrades with new elements that better carry out their tasks and/or provide new functions, all while promoting the removal of modifications no longer needed.


Author(s):  
Anna Buchman ◽  
Isaiah Shriner ◽  
Ting Yang ◽  
Junru Liu ◽  
Igor Antoshechkin ◽  
...  

AbstractEngineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. To overcome this challenge, we engineered SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species) to generate postzygotic reproductive barriers. Using this approach, we engineer multiple reproductively isolated SPECIES and demonstrate their threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.One Sentence SummarySynthetically engineered SPECIES drive confinable population replacement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Buchman ◽  
Isaiah Shriner ◽  
Ting Yang ◽  
Junru Liu ◽  
Igor Antoshechkin ◽  
...  

AbstractEngineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. Here, to overcome this challenge, we engineer SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species), an engineered genetic incompatibility approach, to generate postzygotic reproductive barriers. Using this approach, we create multiple reproductively isolated SPECIES and demonstrate their reproductive isolation and threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.


2020 ◽  
Vol 117 (16) ◽  
pp. 9013-9021 ◽  
Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A. Hay

Gene drive-based strategies for modifying populations face the problem that genes encoding cargo and the drive mechanism are subject to separation, mutational inactivation, and loss of efficacy. Resilience, an ability to respond to these eventualities in ways that restore population modification with functional genes, is needed for long-term success. Here, we show that resilience can be achieved through cycles of population modification with “Cleave and Rescue” (ClvR) selfish genetic elements. ClvR comprises a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Cycles of modification can, in principle, be carried out if two ClvR elements targeting different essential genes are located at the same genomic position, and one of them, ClvRn+1, carries a Rescue transgene from an earlier element, ClvRn. ClvRn+1 should spread within a population of ClvRn, while also bringing about a decrease in its frequency. To test this hypothesis, we first show that multiple ClvRs, each targeting a different essential gene, function when located at a common chromosomal position in Drosophila. We then show that when several of these also carry the Rescue from a different ClvR, they spread to transgene fixation in populations fixed for the latter and at its expense. Therefore, genetic modifications of populations can be overwritten with new content, providing an ongoing point of control.


2021 ◽  
Vol 22 (3) ◽  
pp. 1175
Author(s):  
Ryuta Inukai ◽  
Kanako Mori ◽  
Keiko Kuwata ◽  
Chihiro Suzuki ◽  
Masatoshi Maki ◽  
...  

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


Sign in / Sign up

Export Citation Format

Share Document