scholarly journals Allele frequency divergence reveals ubiquitous influence of positive selection in Drosophila

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009833
Author(s):  
Jason Bertram

Resolving the role of natural selection is a basic objective of evolutionary biology. It is generally difficult to detect the influence of selection because ubiquitous non-selective stochastic change in allele frequencies (genetic drift) degrades evidence of selection. As a result, selection scans typically only identify genomic regions that have undergone episodes of intense selection. Yet it seems likely such episodes are the exception; the norm is more likely to involve subtle, concurrent selective changes at a large number of loci. We develop a new theoretical approach that uncovers a previously undocumented genome-wide signature of selection in the collective divergence of allele frequencies over time. Applying our approach to temporally resolved allele frequency measurements from laboratory and wild Drosophila populations, we quantify the selective contribution to allele frequency divergence and find that selection has substantial effects on much of the genome. We further quantify the magnitude of the total selection coefficient (a measure of the combined effects of direct and linked selection) at a typical polymorphic locus, and find this to be large (of order 1%) even though most mutations are not directly under selection. We find that selective allele frequency divergence is substantially elevated at intermediate allele frequencies, which we argue is most parsimoniously explained by positive—not negative—selection. Thus, in these populations most mutations are far from evolving neutrally in the short term (tens of generations), including mutations with neutral fitness effects, and the result cannot be explained simply as an ongoing purging of deleterious mutations.

2021 ◽  
Author(s):  
Jason Bertram

Resolving the role of natural selection is a basic objective of evolutionary biology. It is generally difficult to detect the influence of selection because ubiquitous non-selective stochastic change in allele frequencies (genetic drift) degrades evidence of selection. As a result, selection scans typically only identify genomic regions that have undergone episodes of intense selection. Yet it seems likely such episodes are the exception; the norm is more likely to involve subtle, concurrent selective changes at a large number of loci. We develop a new theoretical approach that uncovers a previously undocumented genome-wide signature of selection in the collective divergence of allele frequencies over time. Applying our approach to temporally-resolved allele frequency measurements from laboratory and wild Drosophila populations, we quantify the selective contribution to allele frequency divergence and find that selection has substantial effects on much of the genome. We further quantify the magnitude of the total selection coefficient (a measure of the combined effects of direct and linked selection) at a typical polymorphic locus, and find this to be large (of order 1%) even though most mutations are not directly under selection. We find that selective allele frequency divergence is substantial at intermediate allele frequencies, which we argue is most parsimoniously explained by positive --- not purifying --- selection. Thus, in these populations most mutations are far from evolving neutrally in the short term (tens of generations), including mutations with neutral fitness effects, and the result cannot be explained simply as a purging of deleterious mutations.


2020 ◽  
Author(s):  
Murillo F. Rodrigues ◽  
Maria D. Vibranovski ◽  
Rodrigo Cogni

AbstractSpatial and seasonal variation in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because non-adaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal change. Here, we test whether there is a genome-wide relationship between clinal and seasonal variation, and whether the pattern is consistent with selection. We investigate the role of natural selection in driving these allele frequency changes. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the US, and across seasons within Pennsylvania. We show that there is a genome-wide pattern of clinal variation mirroring seasonal variation, which cannot be explained by linked selection alone. This pattern is stronger for coding than intergenic regions, consistent with natural selection. We find that the genome-wide relationship between clinal and seasonal variation could be explained by about 4% of the common autosomal variants being under selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in D. melanogaster.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1277-1286 ◽  
Author(s):  
Bruce E. Deagle ◽  
Felicity C. Jones ◽  
Yingguang F. Chan ◽  
Devin M. Absher ◽  
David M. Kingsley ◽  
...  

Understanding the genetics of adaptation is a central focus in evolutionary biology. Here, we use a population genomics approach to examine striking parallel morphological divergences of parapatric stream–lake ecotypes of threespine stickleback fish in three watersheds on the Haida Gwaii archipelago, western Canada. Genome-wide variation at greater than 1000 single nucleotide polymorphism loci indicate separate origin of giant lake and small-bodied stream fish within each watershed (mean F ST between watersheds = 0.244 and within = 0.114). Genome scans within watersheds identified a total of 21 genomic regions that are highly differentiated between ecotypes and are probably subject to directional selection. Most outliers were watershed-specific, but genomic regions undergoing parallel genetic changes in multiple watersheds were also identified. Interestingly, several of the stream–lake outlier regions match those previously identified in marine–freshwater and benthic–limnetic genome scans, indicating reuse of the same genetic loci in different adaptive scenarios. We also identified multiple new outlier loci, which may contribute to unique aspects of differentiation in stream–lake environments. Overall, our data emphasize the important role of ecological boundaries in driving both local and broadly occurring parallel genetic changes during adaptation.


Nature Plants ◽  
2016 ◽  
Vol 2 (11) ◽  
Author(s):  
Xiangchao Gan ◽  
Angela Hay ◽  
Michiel Kwantes ◽  
Georg Haberer ◽  
Asis Hallab ◽  
...  

Abstract Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.


2020 ◽  
Vol 61 (1) ◽  
pp. 17-23
Author(s):  
Michelle M. Nay ◽  
Stephen L. Byrne ◽  
Eduardo A. Pérez ◽  
Achim Walter ◽  
Bruno Studer

Genomics-assisted breeding of buckwheat (Fagopyrum esculentum Moench) depends on robust genotyping methods. Genotyping by sequencing (GBS) has evolved as a flexible and cost-effective technique frequently used in plant breeding. Several GBS pipelines are available to genetically characterize single genotypes but these are not able to represent the genetic diversity of buckwheat accessions that are maintained as genetically heterogeneous, open-pollinating populations. Here we report the development of a GBS pipeline which, rather than reporting the state of bi-allelic single nucleotide polymorphisms (SNPs), resolves allele frequencies within populations on a genome-wide scale. These genome-wide allele frequency fingerprints (GWAFFs) from 100 pooled individual plants per accession were found to be highly reproducible and revealed the genetic similarity of 20 different buckwheat accessions analysed in our study. The GWAFFs cannot only be used as an efficient tool to precisely describe buckwheat breeding material, they also offer new opportunities to investigate the genetic diversity between different buckwheat accessions and establish variant databases for key material. Furthermore, GWAFFs provide the opportunity to associate allele frequencies to phenotypic traits and quality parameters that are most reliably described on population level. This is the key to practically implement powerful genomics-assisted breeding concepts such as marker-assisted selection and genomic selection in future breeding schemes of allogamous buckwheat. Key words: Buckwheat (Fagopyrum esculentum Moench), genotyping by sequencing (GBS), population genomics, genome-wide allele frequency fingerprints (GWAFFs)   Izvleček Genomsko podprto žlahtnjenje ajde (Fagopyrum esculentum Moench) je odvisno od robustnih metod genotipiziranja. Genotipiziranje s spremljanjem sekvenc (genotyping by sequencing, GBS) se je razvilo kot fleksibilna in razmeroma poceni metoda, ki se jo uporablja pri žlahtnjenju rastlin. Uporabnih je več virov GBS za genetsko karakterizacijo posamičnih genotipov, toda te metode niso primerne za predstavitev genetske raznolikosti vzorcev ajde, ki jih vzdržujemo v heterozigotni obliki, kar velja za odprto oplodne populacije. Tu poročamo o razvoju GBS metode, ki, namesto prikazovanja bi-alelnega polimorfizma posameznih nukleotidov (single nucleotide polymorphisms, SNPs), pokaže frekvence alelov v populaciji na nivoju genoma. Ta prikaz frekvence alelov na nivoju genoma (genome-wide allele frequency fingerprints, GWAFFs) z združenimi sto posameznimi rastlinami vsakega vzorca se je pokazal kot visoko ponovljiv in je prikazal genetsko podobnost 20 različnih vzorcev ajde, ki smo jih analizirali v naši raziskavi. Metoda GWAFFs ni uporabna samo kot učinkovito orodje za natančen opis materiala za žlahtnjenje ajde, ponuja tudi možnosti raziskave  genetskih razlik med različnimi vzorci ajde in omogoča zbirke podatkov. Nadalje, metoda GWAFFs omogoča povezovanje frekvenc alelov s fenotipskimi lastnostmi in kvalitativnih parametrov, ki so najbolj zanesljivo opisani na nivoju populacij. To je ključ za praktično uporabo z genomiko podprtega žlahtnjenja, kot je z genskimi markerji podprta selekcija in genomska selekcija z GWAFFs. Ključne besede: ajda (Fagopyrum esculentum Moench), genotipizacija s sekvenciranjem (GBS), populacijska genomika, GWAFFs


2022 ◽  
Author(s):  
Linyi Zhang ◽  
Samridhi Chaturvedi ◽  
Chris Nice ◽  
Lauren Lucas ◽  
Zachariah Gompert

Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviating from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average then SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess introgression from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might contribute disproportionately to hybrid fitness and thus (partial) reproductive isolation.


2020 ◽  
Author(s):  
Wouter J. Peyrot ◽  
Alkes L. Price

AbstractPsychiatric disorders are highly genetically correlated, and many studies have focused on their shared genetic components. However, little research has been conducted on the genetic differences between psychiatric disorders, because case-case comparisons of allele frequencies among cases currently require individual-level data from cases of both disorders. We developed a new method (CC-GWAS) to test for differences in allele frequency among cases of two different disorders using summary statistics from the respective case-control GWAS; CC-GWAS relies on analytical assessments of the genetic distance between cases and controls of each disorder. Simulations and analytical computations confirm that CC-GWAS is well-powered and attains effective control of type I error. In particular, CC-GWAS identifies and discards false positive associations that can arise due to differential tagging of a shared causal SNP (with the same allele frequency in cases of both disorders), e.g. due to subtle differences in ancestry between the input case-control studies. We applied CC-GWAS to publicly available summary statistics for schizophrenia, bipolar disorder and major depressive disorder, and identified 116 independent genome-wide significant loci distinguishing these three disorders, including 21 CC-GWAS-specific loci that were not genome-wide significant in the input case-control summary statistics. Two of the CC-GWAS-specific loci implicate the genes KLF6 and KLF16 from the Kruppel-like family of transcription factors; these genes have been linked to neurite outgrowth and axon regeneration. We performed a broader set of case-case comparisons by additionally analyzing ADHD, anorexia nervosa, autism, obsessive-compulsive disorder and Tourette’s Syndrome, yielding a total of 196 independent loci distinguishing eight psychiatric disorders, including 72 CC-GWAS-specific loci. We confirmed that loci identified by CC-GWAS replicated convincingly in applications to data sets for which independent replication data were available. In conclusion, CC-GWAS robustly identifies loci with different allele frequencies among cases of different disorders using results from the respective case-control GWAS, providing new insights into the genetic differences between eight psychiatric disorders.


2017 ◽  
Author(s):  
Débora Y. C. Brandt ◽  
Jônatas César ◽  
Jérôme Goudet ◽  
Diogo Meyer

ABSTRACTBalancing selection is defined as a class of selective regimes that maintain polymorphism above what is expected under neutrality. Theory predicts that balancing selection reduces population differentiation, as measured by FST. However, balancing selection regimes in which different sets of alleles are maintained in different populations could increase population differentiation. To tackle this issue, we investigated population differentiation at the HLA genes, which constitute the most striking example of balancing selection in humans. We found that population differentiation of single nucleotide polymorphisms (SNPs) at the HLA genes is on average lower than that of SNPs in other genomic regions. However, this result depends on accounting for the differences in allele frequency between selected and putatively neutral sites. Our finding of reduced differentiation at SNPs within HLA genes suggests a predominant role of shared selective pressures among populations at a global scale. However, in pairs of closely related populations, where genome-wide differentiation is low, differentiation at HLA is higher than in other genomic regions. This pattern was reproduced in simulations of overdominant selection. We conclude that population differentiation at the HLA genes is generally lower than genome-wide, but it may be higher for recently diverged population pairs, and that this pattern can be explained by a simple overdominance regime.


2018 ◽  
Author(s):  
Nicola Cook ◽  
Darren J Parker ◽  
Frances Turner ◽  
Eran Tauber ◽  
Bart A Pannebakker ◽  
...  

AbstractDNA methylation of cytosine residues across the genome influences how genes and phenotypes are regulated in a wide range of organisms. As such, understanding the role of DNA methylation and other epigenetic mechanisms has become very much a part of mapping genotype to phenotype, a major question in evolutionary biology. Ideally, we would like to manipulate DNA methylation patterns on a genome-wide scale, to help us to elucidate the role that epigenetic modifications play in phenotypic expression. Recently, the demethylating agent 5-aza-2’-deoxycytidine (5-aza-dC; commonly used in the epigenetic treatment of certain cancers), has been deployed to explore the epigenetic regulation of a number of traits of interest to evolutionary ecologists, including facultative sex allocation in the parasitoid wasp Nasonia vitripennis. In a recent study, we showed that treatment with 5-aza-dC did not ablate the facultative sex allocation response in Nasonia, but shifted the patterns of sex allocation in a way predicted by genomic conflict theory. This was the first (albeit indirect) experimental evidence for genomic conflict over sex allocation facilitated by DNA methylation. However, that work lacked direct evidence of the effects of 5-aza-dC on DNA methylation, and indeed the effect of the chemical has since been questioned in Nasonia. Here, using whole-genome bisulphite sequencing of more than 4 million CpGs, across more than 11,000 genes, we demonstrate unequivocally that 5-aza-dC disrupts methylation on a large scale across the Nasonia vitripennis genome. We show that the disruption can lead to both hypo- and hyper-methylation, may vary across tissues and time of sampling, and that the effects of 5-aza-dC are context- and sequence specific. We conclude that 5-aza-dC does indeed have the potential to be repurposed as a tool for studying the role of DNA methylation in evolutionary ecology, whilst many details of its action remain to be discovered.Author SummaryShedding light on the mechanistic basis of phenotypes is a major aim in the field of evolutionary biology. If we understand how phenotypes are controlled at the molecular level, we can begin to understand how evolution has shaped that phenotype and conversely, how genetic architecture may constrain trait evolution. Epigenetic markers (such as DNA methylation) also influence phenotypic expression by regulating how and when genes are expressed. Recently, 5-aza-2’-deoxycytidine (5-aza-dC), a hypomethylating agent used in the treatment of certain cancers, has been used to explore the epigenetic regulation of traits of interest to evolutionary ecologists. Previously, we used 5-aza-dC to validate a role for DNA methylation in facultative sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. However, the direct effects of the chemical were not examined at that point and its efficacy in insects was questioned. Here, we demonstrate that 5-aza-dC disrupts DNA methylation on a genome-wide scale in a context- and sequence-specific manner and results in both hypo- and hyper-methylation. Our work demonstrates that 5-aza-dC has the potential to be repurposed as a tool for studying the role of DNA methylation in phenotypic expression.


Sign in / Sign up

Export Citation Format

Share Document