scholarly journals Correction: Fine Mapping of the Interaction between C4b-Binding Protein and Outer Membrane Proteins LigA and LigB of Pathogenic Leptospira interrogans

2015 ◽  
Vol 9 (12) ◽  
pp. e0004286 ◽  
Author(s):  
Leandro C. D. Breda ◽  
Ching-Lin Hsieh ◽  
Mónica M. Castiblanco Valencia ◽  
Ludmila B. da Silva ◽  
Angela S. Barbosa ◽  
...  
2015 ◽  
Vol 9 (10) ◽  
pp. e0004192 ◽  
Author(s):  
Leandro C. D. Breda ◽  
Ching-Lin Hsieh ◽  
Mónica M. Castiblanco Valencia ◽  
Ludmila B. da Silva ◽  
Angela S. Barbosa ◽  
...  

2009 ◽  
Vol 39 (9) ◽  
pp. 2539-2543
Author(s):  
Bárbara Nobre Lafetá ◽  
Elaine Cristina de Castro ◽  
Nivaldo da Silva

The protein profile of the outer membrane of Leptospira interrogans serovar Hardjo subtype hardjoprajitno associated with the bovine natural immune response was investigated. The outer membrane proteins were extracted utilizing Triton X114 and precipitated with acetone. The protein sample was then resolved by SDS-PAGE and reacted in western blot against sera from a hyperimmune rabbit and from naturally infected bovines. In silver stained gels, 14 protein bands were observed, among which four proteins, with 22, 29, 47 and 63kDa, appeared as major constituents. Western blot tests with hyperimmune rabbit antiserum detected bands corresponding to proteins with 35; 27; 24; 21; 17 and 14kDa, while 32kDa and 45kDa proteins were the most immunoreactive with sera from naturally infected bovines.


2011 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Timiri V. Meenambigai ◽  
Gopalakrishnan Ravikumar ◽  
Andy Srithar ◽  
Govindan Balakrishnan ◽  
Chidambaram Saranya ◽  
...  

<p>Leptospirosis is a worldwide zoonotic disease of cattle associated with pathogenic leptospiral infection. This study focuses in the use of a molecular tool to detect pathogenic leptospiral infection in bovines by targeting the outer membrane proteins LipL32 and LipL21 simultaneously in a multiplex PCR. Sixteen pathogenic reference strains and 10 bovine serum samples were analyzed for simultaneous detection of both genes at appropriate annealing conditions. These findings are suggestive of the fact that multiplex PCR can be used to detect major outer membrane proteins of pathogenic leptospira from serum samples. Further it aided in the differentiation of pathogenic and non-pathogenic species of leptospires too. This study will definitely serve as a valuable tool, as it suggests the importance of <em>LipL32</em> genes as potential candidates for vaccine development to control animal Leptospirosis.</p>


PROTEOMICS ◽  
2020 ◽  
Vol 20 (19-20) ◽  
pp. 2000170
Author(s):  
Sikha Thoduvayil ◽  
Gunasekaran Dhandapani ◽  
Rahul Brahma ◽  
Rex Devasahayam Arokia Balaya ◽  
Kiran K. Mangalaparthi ◽  
...  

2006 ◽  
Vol 53 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Kristian Riesbeck ◽  
Thuan Tong Tan ◽  
Arne Forsgren

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is located within MID962-1200. In parallel, MID is stimulatory for B lymphocytes through the IgD B cell receptor. M. catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) are multifunctional outer membrane proteins that can bind complement and extracellular matrix proteins such as vitronectin and fibronectin. An interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and UspA1/A2 has also been observed. Moreover, UspA1/A2 has a unique feature to interfere with the innate immune system of complement by binding C3. Taken together, a growing body of knowledge on M. catarrhalis outer membrane proteins MID and UspA1/A2 and their precise interactions with the human host make them promising vaccine candidates in a future multicomponent vaccine.


2015 ◽  
Vol 22 (8) ◽  
pp. 965-973 ◽  
Author(s):  
D. Monaris ◽  
M. E. Sbrogio-Almeida ◽  
C. C. Dib ◽  
T. A. Canhamero ◽  
G. O. Souza ◽  
...  

ABSTRACTLeptospirosis is a global zoonotic disease caused by differentLeptospiraspecies, such asLeptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinantLeptospira interrogansouter membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) orSalmonellaflagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigACor LigACcoadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.


2005 ◽  
Vol 37 (10) ◽  
pp. 649-656 ◽  
Author(s):  
Xiang-Yan Zhang ◽  
Yang Yu ◽  
Ping He ◽  
Yi-Xuan Zhang ◽  
Bao-Yu Hu ◽  
...  

AbstractLeptospiral outer membrane proteins (OMPs) are highly conserved in different species, and play an essential role in the development of new immunoprotection and serodiagnosis strategies. The genes encoding LipL21, LipL32 and OmpL1 were cloned from the complete genome sequence of Leptospira interrogans serovar lai strain Lai and expressed in vitro. Sequence comparison analysis revealed that the three genes were highly conserved among distinct epidemic leptospires, including three major epidemic species Leptospira interrogans, Leptospira borgpetersenii and Leptospira weilii, in China. Immunoblot analysis was further performed to scrutinize 15 epidemic Leptospira reference strains using the antisera of the recombinant OMPs. Both immunoblot assay and reverse transcription-polymerase chain reaction demonstrated that these three OMPs were conservatively expressed in pathogenic L. interrogans strains and other pathogenic leptospires. Additionally, the use of these recombinant OMPs as antigens in enzyme-linked immunosorbent assay (ELISA) for serodiagnosis of leptospirosis was evaluated. The recombinant LipL32 and OmpL1 proteins showed a high degree of ELISA reactivity with sera from patients infected with L. interrogans strain Lai and other pathogenic leptospires. These results may contribute to the identification of candidates for broad-range vaccines and immunodiagnostic antigens in further research.


Sign in / Sign up

Export Citation Format

Share Document