scholarly journals Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e31372 ◽  
Author(s):  
Dan Bar Yaacov ◽  
Karmit Arbel-Thau ◽  
Yael Zilka ◽  
Ofer Ovadia ◽  
Amos Bouskila ◽  
...  
1997 ◽  
Vol 77 (4) ◽  
pp. 515-521 ◽  
Author(s):  
Om P. Rajora ◽  
John D. Mahon

Mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) variations were examined in six cultivars of Lens culinaris ssp. culinaris and two (mtDNA) or one (nuDNA) accession(s) of L. culinaris ssp. orientalis. Total leaf DNA was digested with up to 15 restriction endonucleases, separated by agarose gel electrophoresis and trasferred to nylon membranes. To examine mtDNA variation, blots were probed with mtDNA coding for cytochrome c oxidase I (coxI) and ATPase 6 (atp6) of both wheat and maize as well as apocytochrome b (cob) and Orf25 (orf25) of wheat. Sixteen combinations of mtDNA probes and restriction enzymes revealed 34 fragments that discriminated between at least two lentil accessions. For nuDNA analysis, probes from cDNA and genomic DNA clones of lentil were used to probe the same blots, and identified 46 diagnostic fragments from 19 probe/enzyme combinations. Each lentil accession could be unequivocably distinguished from all others on the basis of both mitochondrial and nuclear DNA fragment patterns. The mitochondrial restriction fragment similarities ranged from 0.944 to 0.989, with a mean of 0.970 but nuclear restriction fragment similarities varied from 0.582 to 0.987, with a mean of 0.743. The apparent genetic relationships among accessions differed according to the source of DNA examined, although the commercial varieties Laird, Brewer and Redchief showed similarly high levels of mean similarity with both nuclear (0.982) and mitochondrial DNA (0.983). Key words: Lens culinaris Medik., genetic variation, mitochondrial, nuclear, DNA, lentil


2019 ◽  
Vol 29 (1) ◽  
pp. 78-90.e5 ◽  
Author(s):  
Meagan J. McManus ◽  
Martin Picard ◽  
Hsiao-Wen Chen ◽  
Hans J. De Haas ◽  
Prasanth Potluri ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5100
Author(s):  
Paulina Kozakiewicz ◽  
Ludmiła Grzybowska-Szatkowska ◽  
Marzanna Ciesielka ◽  
Jolanta Rzymowska

The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 641
Author(s):  
Julio Chávez-Galarza ◽  
Ruth López-Montañez ◽  
Alejandra Jiménez ◽  
Rubén Ferro-Mauricio ◽  
Juan Oré ◽  
...  

Mitochondrial DNA variations of Peruvian honey bee populations were surveyed by using the tRNAleu-cox2 intergenic region. Only two studies have characterized these populations, indicating the presence of Africanized honey bee colonies in different regions of Peru and varied levels of Africanization, but the current status of its genetic diversity is unknown. A total of 512 honey bee colonies were sampled from three regions to characterize them. Our results revealed the presence of European and African haplotypes: the African haplotypes identified belong to sub-lineage AI (13) and sub-lineage AIII (03), and the European haplotypes to lineages C (06) and M (02). Of 24 haplotypes identified, 15 new sequences are reported here (11 sub-lineage AI, 2 sub-lineage AIII, and 2 lineage M). Peruvian honey bee populations presented a higher proportion from African than European haplotypes. High proportions of African haplotype were reported for Piura and Junín, unlike Lima, which showed more European haplotypes from lineage C. Few colonies belonging to lineage M would represent accidental purchase or traces of the introduction into Peru in the 19th century.


Waterbirds ◽  
2003 ◽  
Vol 26 (2) ◽  
pp. 196 ◽  
Author(s):  
Juliann L. Waits ◽  
Michael L. Avery ◽  
Mark E. Tobin ◽  
Paul L. Leberg

2017 ◽  
Vol 95 (8) ◽  
pp. 527-537 ◽  
Author(s):  
James W. Patterson ◽  
Anna M. Duncan ◽  
Kelsey C. McIntyre ◽  
Vett K. Lloyd

Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.


Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document