scholarly journals Whole Transcriptome RNA-Seq Analysis of Breast Cancer Recurrence Risk Using Formalin-Fixed Paraffin-Embedded Tumor Tissue

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e40092 ◽  
Author(s):  
Dominick Sinicropi ◽  
Kunbin Qu ◽  
Francois Collin ◽  
Michael Crager ◽  
Mei-Lan Liu ◽  
...  
2019 ◽  
Author(s):  
Christopher A. Hilker ◽  
Aditya V. Bhagwate ◽  
Jin Sung Jang ◽  
Jeffrey G Meyer ◽  
Asha A. Nair ◽  
...  

AbstractFormalin fixed paraffin embedded (FFPE) tissues are commonly used biospecimen for clinical diagnosis. However, RNA degradation is extensive when isolated from FFPE blocks making it challenging for whole transcriptome profiling (RNA-seq). Here, we examined RNA isolation methods, quality metrics, and the performance of RNA-seq using different approaches with RNA isolated from FFPE and fresh frozen (FF) tissues. We evaluated FFPE RNA extraction methods using six different tissues and five different methods. The reproducibility and quality of the prepared libraries from these RNAs were assessed by RNA-seq. We next examined the performance and reproducibility of RNA-seq for gene expression profiling with FFPE and FF samples using targeted (Kinome capture) and whole transcriptome capture based sequencing. Finally, we assessed Agilent SureSelect All-Exon V6+UTR capture and the Illumina TruSeq RNA Access protocols for their ability to detect known gene fusions in FFPE RNA samples. Although the overall yield of RNA varied among extraction methods, gene expression profiles generated by RNA-seq were highly correlated (>90%) when the input RNA was of sufficient quality (≥DV200 30%) and quantity (≥ 100 ng). Using gene capture, we observed a linear relationship between gene expression levels for shared genes that were captured using either All-Exon or Kinome kits. Gene expression correlations between the two capture-based approaches were similar using RNA from FFPE and FF samples. However, TruSeq RNA Access protocol provided significantly higher exon and junction reads when compared to the SureSelect All-Exon capture kit and was more sensitive for fusion gene detection. Our study established pre and post library construction QC parameters that are essential to reproducible RNA-seq profiling using FFPE samples. We show that gene capture based NGS sequencing is an efficient and highly reproducible strategy for gene expression measurements as well as fusion gene detection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chun-hui Zheng ◽  
Zhao-yun Liu ◽  
Chen-xi Yuan ◽  
Xiao-yun Dong ◽  
Hai-mei Li ◽  
...  

The shrinkage mode of tumor extent after neoadjuvant chemotherapy (NAC) is an important index to evaluate the odds of breast-conserving surgery. However, there is no sufficient measurement to predict the shrinkage mode after NAC. In this study, we analyzed 24 patients' formalin-fixed, paraffin-embedded samples before and after treatment and analyzed 456 cancer-related genes panel by using target next-generation sequencing. Meanwhile, the pathological shrinkage mode was reconstructed in three dimensions after surgery, and the genetic heterogeneity level was estimated by mutant-allele tumor heterogeneity (MATH). We measured the genetic intra-tumor heterogeneity and explored its correlation with the shrinkage mode after NAC. A total of 17 matched pair samples of primary tumor tissue and residual tumor tissue were successfully accessed. It was found that the most common mutated genes were TP53 and PIK3CA in both samples before and after NAC, and no recurrent mutations were significantly associated with the shrinkage mode. Besides, the MATH value of formalin-fixed, paraffin-embedded samples before and after NAC was analyzed by the area under the curve of the receiver operating characteristic, and it is feasible to classify patients into concentric shrinkage mode and non-concentric shrinkage mode in NAC based on the MATH threshold of 58. Our findings indicate that the MATH value was associated with the shrinkage mode of breast cancer in a non-linear model. Patients with the MATH value below the threshold of 58 before and after NAC displayed a concentric shrinkage mode. The area under the curve was 0.89, with a sensitivity of 0.69 and specificity of 1. Our study might provide a promising application of intra-tumor heterogeneity that is measured by MATH to make a choice of surgery.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Helena Estevão-Pereira ◽  
João Lobo ◽  
Sofia Salta ◽  
Maria Amorim ◽  
Paula Lopes ◽  
...  

Abstract Background Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Methods Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (n = 16) and metastatic BrC tissues (n = 22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (n = 82) and metastatic BrC tissues (n = 93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (n = 20) and advanced (n = 25) disease. ROC curve was constructed to evaluate prognostic performance. Results MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC. Conclusions MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patients’ monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Marczyk ◽  
Chunxiao Fu ◽  
Rosanna Lau ◽  
Lili Du ◽  
Alexander J. Trevarton ◽  
...  

Abstract Background Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. Methods Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. Results Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63–0.66) and between technical replicates (median expression difference 0.13–0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31–0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91–0.96). Conclusions The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.


Sign in / Sign up

Export Citation Format

Share Document