scholarly journals Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42842 ◽  
Author(s):  
Kvin Lertpiriyapong ◽  
Eric R. Gamazon ◽  
Yan Feng ◽  
Danny S. Park ◽  
Jassia Pang ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Luca Robinson ◽  
Janie Liaw ◽  
Zahra Omole ◽  
Dong Xia ◽  
Arnoud H. M. van Vliet ◽  
...  

The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the “T6SS-containing CJIE3” as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luca Robinson ◽  
Janie Liaw ◽  
Zahra Omole ◽  
Dong Xia ◽  
Arnoud H. M. van Vliet ◽  
...  

EMBO Reports ◽  
2017 ◽  
Vol 18 (7) ◽  
pp. 1090-1099 ◽  
Author(s):  
Yi‐Wei Chang ◽  
Lee A Rettberg ◽  
Davi R Ortega ◽  
Grant J Jensen

Author(s):  
Liyun Liu ◽  
Liqiong Song ◽  
Rong Deng ◽  
Ruiting Lan ◽  
Wenjie Jin ◽  
...  

Abstract Citrobacter freundii is a significant cause of human infections, responsible for food poisoning, diarrhea, and urinary tract infections. We previously identified a highly cytotoxic and adhesive C. freundii strain CF74 expressing a type VI secretion system (T6SS). In this study, we showed that in mice-derived macrophages, C. freundii CF74 activated the Nucleotide Oligomerization Domain -Like Receptor Family, Pyrin Domain Containing 3(NLRP3) inflammasomes in a T6SS-dependent manner. The C. freundii T6SS activated the inflammasomes mainly through caspase 1 and mediated pyroptosis of macrophages by releasing the cleaved gasdermin-N domain. The CF74 T6SS was required for flagellin-induced interleukin 1β release by macrophages. We further show that the T6SS tail component and effector, hemolysin co-regulation protein-2 (Hcp-2), was necessary and sufficient to trigger NLRP3 inflammasome activation. In vivo, the T6SS played a key role in mediating interleukin 1β secretion and the survival of mice during C. freundii infection in mice. These findings provide novel insights into the role of T6SS in the pathogenesis of C. freundii.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 498-512 ◽  
Author(s):  
Rembert Pieper ◽  
Shih-Ting Huang ◽  
Jeffrey M. Robinson ◽  
David J. Clark ◽  
Hamid Alami ◽  
...  

Yersinia pestis cells were grown in vitro at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small β-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.


Sign in / Sign up

Export Citation Format

Share Document