scholarly journals Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48557 ◽  
Author(s):  
Diana Sánchez-Ponce ◽  
Javier DeFelipe ◽  
Juan José Garrido ◽  
Alberto Muñoz
2020 ◽  
Author(s):  
Shaun S. Sanders ◽  
Luiselys M. Hernandez ◽  
Heun Soh ◽  
Santi Karnam ◽  
Randall S. Walikonis ◽  
...  

AbstractThe palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the Axon Initial Segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.Impact StatementZDHHC14 controls palmitoylation and axon initial segment targeting of PSD93 and Kv1-family potassium channels, events that are essential for normal neuronal excitability.


2016 ◽  
Author(s):  
Christophe Leterrier ◽  
Nadine Clerc ◽  
Fanny Rueda-Boroni ◽  
Audrey Montersino ◽  
Bénédicte Dargent ◽  
...  

The axon initial segment (AIS) is a specialized neuronal compartment that plays a key role in neuronal development and excitability. It concentrates multiple ion channels and cell adhesion molecules. The anchoring of these AIS membrane components is known to be highly dependent of the scaffold protein ankyrin G (ankG) but whether ankG membrane partners play a reciprocal role in ankG targeting and stabilization has not been studied yet. In cultured hippocampal neurons and cortical organotypic slices, we found that shRNA-mediated knockdown of ankG membrane partners led to a decrease of ankG concentration and perturbed the AIS formation and maintenance. These perturbations were rescued by expressing an AIS-targeted sodium channel, or a minimal construct containing the ankyrin-binding domain of Nav1.2 and a membrane anchor. We thus demonstrate that a tight and precocious association of ankG to its membrane partners is crucial for the establishment and maintenance of the AIS.


Author(s):  
Wei Zhang ◽  
María Ciorraga ◽  
Pablo Mendez ◽  
Diana Retana ◽  
Norah Boumedine-Guignon ◽  
...  

AbstractThe axon initial segment (AIS) is essential for maintaining neuronal polarity, modulating protein transport into the axon, and action potential generation. These functions are supported by a distinctive actin and microtubule cytoskeleton that controls axonal trafficking and maintains a high density of voltage-gated ion channels linked by scaffold proteins to the AIS cytoskeleton. However, our knowledge of the mechanisms and proteins involved in AIS cytoskeleton regulation to maintain or modulate AIS structure is limited. In this context, formins play a significant role in the modulation of actin and microtubules. We show that pharmacological inhibition of formins modifies AIS actin and microtubule characteristics in cultured hippocampal neurons, reducing F-actin density and decreasing microtubule acetylation. Moreover, formin inhibition diminishes sodium channels, ankyrinG and βIV-spectrin AIS density, and AIS length, in cultured neurons and brain slices, accompanied by decreased neuronal excitability. We show that genetic downregulation of the mDia1 formin by interference RNAs also decreases AIS protein density and shortens AIS length. The ankyrinG decrease and AIS shortening observed in pharmacologically inhibited neurons and neuron-expressing mDia1 shRNAs were impaired by HDAC6 downregulation or EB1-GFP expression, known to increase microtubule acetylation or stability. However, actin stabilization only partially prevented AIS shortening without affecting AIS protein density loss. These results suggest that mDia1 maintain AIS composition and length contributing to the stability of AIS microtubules.


2019 ◽  
Author(s):  
Amr Abouelezz ◽  
Holly Stefen ◽  
Mikael Segerstråle ◽  
David Micinski ◽  
Rimante Minkeviciene ◽  
...  

ABSTRACTThe axon initial segment (AIS) is the site of action potential initiation and serves as a vesicular filter and diffusion barrier that help maintain neuronal polarity. Recent studies have revealed details about a specialized structural complex in the AIS. While an intact actin cytoskeleton is required for AIS formation, pharmacological disruption of actin polymerization compromises the AIS vesicle filter but does not affect overall AIS structure. In this study, we found that the tropomyosin isoform Tpm3.1 decorates a population of relatively stable actin filaments in the AIS. Inhibiting Tpm3.1 in cultured hippocampal neurons led to the loss of AIS structure, the AIS vesicle filter, the clustering of sodium ion channels, and reduced firing frequency. We propose that Tpm3.1-decorated actin filaments form a stable actin filament network under the AIS membrane which provides a scaffold for membrane organization and AIS proteins.


1994 ◽  
Vol 71 (6) ◽  
pp. 2570-2575 ◽  
Author(s):  
L. S. Premkumar ◽  
P. W. Gage

1. Single-channel currents were recorded in cell-attached patches on cultured hippocampal neurons in response to gamma-aminobutyric acid-B (GABAB) agonists or serotonin applied to the cell surface outside the patch area. 2. The channels activated by GABAB agonists and serotonin were potassium selective but had a different conductance and kinetic behavior. Channels activated by GABAB agonists had a higher conductance, longer open-time, and longer burst-length than channels activated by serotonin. 3. The kinetic behavior of channels activated by GABAB agonists varied with potential whereas channels activated by serotonin did not show voltage-dependent changes in kinetics. 4. In a few cell-attached patches, both types of channel were activated when the cell was exposed to GABA together with serotonin. 5. It was concluded that GABAB agonists and serotonin activate different potassium channels in the soma of cultured hippocampal neurons.


2011 ◽  
Vol 286 (27) ◽  
pp. 24385-24393 ◽  
Author(s):  
Martin Kriebel ◽  
Jennifer Metzger ◽  
Sabine Trinks ◽  
Deepti Chugh ◽  
Robert J. Harvey ◽  
...  

Cell adhesion molecules regulate synapse formation and maintenance via transsynaptic contact stabilization involving both extracellular interactions and intracellular postsynaptic scaffold assembly. The cell adhesion molecule neurofascin is localized at the axon initial segment of granular cells in rat dentate gyrus, which is mainly targeted by chandelier cells. Lentiviral shRNA-mediated knockdown of neurofascin in adult rat brain indicates that neurofascin regulates the number and size of postsynaptic gephyrin scaffolds, the number of GABAA receptor clusters as well as presynaptic glutamate decarboxylase-positive terminals at the axon initial segment. By contrast, overexpression of neurofascin in hippocampal neurons increases gephyrin cluster size presumably via stimulation of fibroblast growth factor receptor 1 signaling pathways.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shaun S Sanders ◽  
Luiselys M Hernandez ◽  
Heun Soh ◽  
Santi Karnam ◽  
Randall S Walikonis ◽  
...  

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Sign in / Sign up

Export Citation Format

Share Document