scholarly journals Structure of the Type III Secretion Effector Protein ExoU in Complex with Its Chaperone SpcU

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49388 ◽  
Author(s):  
Andrei S. Halavaty ◽  
Dominika Borek ◽  
Gregory H. Tyson ◽  
Jeff L. Veesenmeyer ◽  
Ludmilla Shuvalova ◽  
...  
PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10505 ◽  
Author(s):  
Rong Lu ◽  
Shaoping Wu ◽  
Xingyin Liu ◽  
Yinglin Xia ◽  
Yong-guo Zhang ◽  
...  

ACS Omega ◽  
2017 ◽  
Vol 2 (6) ◽  
pp. 2977-2984 ◽  
Author(s):  
Axel W. Fischer ◽  
David M. Anderson ◽  
Maxx H. Tessmer ◽  
Dara W. Frank ◽  
Jimmy B. Feix ◽  
...  

2010 ◽  
Vol 17 (9) ◽  
pp. 1371-1376 ◽  
Author(s):  
Jie Wang ◽  
Yingqian Zhang ◽  
Ping Yu ◽  
Guangming Zhong

ABSTRACT We have previously shown that individuals infected with Chlamydia trachomatis can develop a robust antibody response to a Chlamydia type III secretion effector protein called Tarp and that immunization with Tarp induces protection against challenge infection in mice. The current study aimed to map the immunodominant regions of the Tarp protein by expressing 11 fragments of Tarp as glutathione S-transferase (GST) fusion proteins and detecting the reactivity of these fusion proteins with antisera from patients infected with C. trachomatis in the urogenital tract or in the ocular tissue and from rabbits immunized with C. trachomatis organisms. A major immunodominant region was strongly recognized by all antibodies. This region covers amino acids 152 to 302, consisting of three repeats (amino acids 152 to 201, 202 to 251, and 252 to 302). Each of the repeats contains multiple tyrosine residues that are phosphorylated by host cell kinases when Tarp is injected into host cells. Several other minor immunodominant regions were also identified, including those comprising amino acids 1 to 156, 310 to 431, and 582 to 682 (recognized by antisera from both humans and rabbits), that comprising amino acids 425 to 581 (recognized only by human antisera), and that comprising amino acids 683 to 847 (preferentially recognized by rabbit antisera). This immunodominance was also confirmed by the observations that six out of the nine monoclonal antibodies (MAbs) bound to the major immunodominant region and that the other three each bound to one of the minor fragments, comprising amino acids 1 to 119, 120 to 151, and 310 to 431. The antigenicity analyses have provided important information for further understanding the structure and function of Tarp.


2020 ◽  
Vol 110 (5) ◽  
pp. 981-988 ◽  
Author(s):  
Yung-An Lee ◽  
Pei-Yu Yang ◽  
Shau-Chang Huang

Xanthomonads were detected by using the Xan-D(CCF) medium from the brassica seeds, and their pathogenicity was determined by plant inoculation tests. It was found that some seed lots were infested with Xanthomonas campestris pv. campestris, some with X. campestris pv. raphani, and some with nonpathogenic xanthomonads. The nonpathogenic xanthomonad strains were identified as X. campestris, and the multilocus sequence analysis showed that the nonpathogenic X. campestris strains were grouped together with pathogenic X. campestris, but not with nonpathogenic strains of X. arboricola. In addition, all isolated X. campestris pv. campestris and X. campestris pv. raphani strains were positive in the hrpF-PCR, but the nonpathogenic strains were negative. It was further found that nonpathogenic X. campestris strain nE1 does not contain the entire pathogenicity island (hrp gene cluster; type III secretion system) and all type III effector protein genes based on the whole genome sequence analyses. The nonpathogenic X. campestris strain nE1 could acquire the entire pathogenicity island from the endemic X. campestris pv. campestris and X. campestris pv. raphani strains by conjugation, but type III effector genes were not cotransferred. The studies showed that the nonpathogenic X. campestris strains indeed exist on the brassica seeds, but it could be differentiated by the PCR assays on the hrp and type III effector genes. Nevertheless, the nonpathogenic X. campestris strains cannot be ignored because they may be potential gene resources to increase genetic diversity in the endemic pathogenic X. campestris pv. campestris and X. campestris pv. raphani strains.


Structure ◽  
2019 ◽  
Vol 27 (9) ◽  
pp. 1416-1426.e3 ◽  
Author(s):  
Martin F. Peter ◽  
Anne T. Tuukkanen ◽  
Caspar A. Heubach ◽  
Alexander Selsam ◽  
Fraser G. Duthie ◽  
...  

2014 ◽  
Vol 449 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Elena Cardenal-Muñoz ◽  
Gabriel Gutiérrez ◽  
Francisco Ramos-Morales

2003 ◽  
Vol 185 (10) ◽  
pp. 3155-3166 ◽  
Author(s):  
Jung-Gun Kim ◽  
Byoung Keun Park ◽  
Chang-Hyuk Yoo ◽  
Eunkyung Jeon ◽  
Jonghee Oh ◽  
...  

ABSTRACT We sequenced an approximately 29-kb region from Xanthomonas axonopodis pv. glycines that contained the Hrp type III secretion system, and we characterized the genes in this region by Tn3-gus mutagenesis and gene expression analyses. From the region, hrp (hypersensitive response and pathogenicity) and hrc (hrp and conserved) genes, which encode type III secretion systems, and hpa (hrp-associated) genes were identified. The characteristics of the region, such as the presence of many virulence genes, low G+C content, and bordering tRNA genes, satisfied the criteria for a pathogenicity island (PAI) in a bacterium. The PAI was composed of nine hrp, nine hrc, and eight hpa genes with seven plant-inducible promoter boxes. The hrp and hrc mutants failed to elicit hypersensitive responses in pepper plants but induced hypersensitive responses in all tomato plants tested. The Hrp PAI of X. axonopodis pv. glycines resembled the Hrp PAIs of other Xanthomonas species, and the Hrp PAI core region was highly conserved. However, in contrast to the PAI of Pseudomonas syringae, the regions upstream and downstream from the Hrp PAI core region showed variability in the xanthomonads. In addition, we demonstrate that HpaG, which is located in the Hrp PAI region of X. axonopodis pv. glycines, is a response elicitor. Purified HpaG elicited hypersensitive responses at a concentration of 1.0 μM in pepper, tobacco, and Arabidopsis thaliana ecotype Cvi-0 by acting as a type III secreted effector protein. However, HpaG failed to elicit hypersensitive responses in tomato, Chinese cabbage, and A. thaliana ecotypes Col-0 and Ler. This is the first report to show that the harpin-like effector protein of Xanthomonas species exhibits elicitor activity.


2004 ◽  
Vol 53 (11) ◽  
pp. 1145-1149 ◽  
Author(s):  
Rosanna Mundy ◽  
Claire Jenkins ◽  
Jun Yu ◽  
Henry Smith ◽  
Gad Frankel

Enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli are important diarrhoeagenic pathogens; infection is dependent on translocation of a number of type III effector proteins. Until recently all the known effectors were encoded on the LEE pathogenicity island, which also encodes the adhesin intimin and the type III secretion apparatus. Recently, a novel non-LEE effector protein, EspI/NleA, which is required for full virulence in vivo and is encoded on a prophage, was identified. The aim of this study was to determine the distribution of espI among clinical EHEC and EPEC isolates. espI was detected in 86 % and 53 % of LEE+ EHEC and EPEC strains, respectively. Moreover, the espI gene was more commonly found in patients suffering from a more severe disease.


Sign in / Sign up

Export Citation Format

Share Document