scholarly journals Ras/MAPK Signaling Modulates VEGFR-3 Expression through Ets-Mediated p300 Recruitment and Histone Acetylation on the Vegfr3 Gene in Lymphatic Endothelial Cells

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51639 ◽  
Author(s):  
Taeko Ichise ◽  
Nobuaki Yoshida ◽  
Hirotake Ichise
2011 ◽  
Vol 131 (9) ◽  
pp. 1927-1935 ◽  
Author(s):  
Tomomitsu Miyagaki ◽  
Makoto Sugaya ◽  
Hitoshi Okochi ◽  
Yoshihide Asano ◽  
Yayoi Tada ◽  
...  

2000 ◽  
Vol 37 (1) ◽  
pp. 85-95 ◽  
Author(s):  
E Sinzelle ◽  
J P Duong Van Huyen ◽  
S Breiteneder-Geleff ◽  
E Braunberger ◽  
A Deloche ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashish Saxena ◽  
Matthew S. Walters ◽  
Jae-Hung Shieh ◽  
Ling-Bo Shen ◽  
Kazunori Gomi ◽  
...  

AbstractThe human airway epithelium lining the bronchial tree contains basal cells that proliferate, differentiate, and communicate with other components of their microenvironment. One method that cells use for intercellular communication involves the secretion of exosomes and other extracellular vesicles (EVs). We isolated exosome-enriched EVs that were produced from an immortalized human airway basal cell line (BCi-NS1.1) and found that their secretion is increased by exposure to cigarette smoke extract, suggesting that this stress stimulates release of EVs which could affect signaling to other cells. We have previously shown that primary human airway basal cells secrete vascular endothelial growth factor A (VEGFA) which can activate MAPK signaling cascades in endothelial cells via VEGF receptor–2 (VEGFR2). Here, we show that exposure of endothelial cells to exosome-enriched airway basal cell EVs promotes the survival of these cells and that this effect also involves VEGFR2 activation and is, at least in part, mediated by VEGFA present in the EVs. These observations demonstrate that EVs are involved in the intercellular signaling between airway basal cells and the endothelium which we previously reported. The downstream signaling pathways involved may be distinct and specific to the EVs, however, as increased phosphorylation of Akt, STAT3, p44/42 MAPK, and p38 MAPK was not seen following exposure of endothelial cells to airway basal cell EVs.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1371
Author(s):  
Eliane Sibler ◽  
Yuliang He ◽  
Luca Ducoli ◽  
Nadja Keller ◽  
Noriki Fujimoto ◽  
...  

The lymphatic system plays a crucial role in immunity and lymph nodes (LNs) undergo drastic remodeling during inflammation. Here, we used single-cell RNA sequencing to investigate transcriptional changes in lymphatic endothelial cells (LECs) in LNs draining naïve and inflamed skin. We found that subsets of LECs lining the different LN sinuses responded individually to skin inflammation, suggesting that they exert distinct functions under pathological conditions. Among the genes dysregulated during inflammation, we confirmed an up-regulation of CD200 in the LECs lining the subcapsular sinus floor with a possible function in immune regulation. Furthermore, by in silico analysis, we predicted numerous possible interactions of LECs with diverse immune cells in the LNs and found similarities in the transcriptional changes of LN LECs in different skin inflammation settings. In summary, we provide an in-depth analysis of the transcriptional landscape of LN LECs in the naïve state and in skin inflammation.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Cell Reports ◽  
2021 ◽  
Vol 35 (11) ◽  
pp. 109255
Author(s):  
Ayelet Jerafi-Vider ◽  
Ivan Bassi ◽  
Noga Moshe ◽  
Yaara Tevet ◽  
Gideon Hen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document