scholarly journals The Relationship between Aggregation and Toxicity of Polyglutamine-Containing Ataxin-3 in the Intracellular Environment of Escherichia coli

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51890 ◽  
Author(s):  
Gaetano Invernizzi ◽  
Francesco A. Aprile ◽  
Antonino Natalello ◽  
Andrea Ghisleni ◽  
Amanda Penco ◽  
...  
2021 ◽  
Author(s):  
Heesu Kim ◽  
Dong Gun Lee

Abstract Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exert oxidative stress on microorganisms. The spread of antibiotic resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxyldeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentation were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.


2017 ◽  
Vol 80 (7) ◽  
pp. 1214-1221 ◽  
Author(s):  
Daniel L. Weller ◽  
Jasna Kovac ◽  
Sherry Roof ◽  
David J. Kent ◽  
Jeffrey I. Tokman ◽  
...  

ABSTRACT Although wildlife intrusion and untreated manure have been associated with microbial contamination of produce, relatively few studies have examined the survival of Escherichia coli on produce under field conditions following contamination (e.g., via splash from wildlife feces). This experimental study was performed to estimate the die-off rate of E. coli on preharvest lettuce following contamination with a fecal slurry. During August 2015, field-grown lettuce was inoculated via pipette with a fecal slurry that was spiked with a three-strain cocktail of rifampin-resistant nonpathogenic E. coli. Ten lettuce heads were harvested at each of 13 time points following inoculation (0, 2.5, 5, and 24 h after inoculation and every 24 h thereafter until day 10). The most probable number (MPN) of E. coli on each lettuce head was determined, and die-off rates were estimated. The relationship between sample time and the log MPN of E. coli per head was modeled using a segmented linear model. This model had a breakpoint at 106 h (95% confidence interval = 69, 142 h) after inoculation, with a daily decrease of 0.70 and 0.19 log MPN for 0 to 106 h and 106 to 240 h following inoculation, respectively. These findings are consistent with die-off rates obtained in similar studies that assessed E. coli survival on produce following irrigation. Overall, these findings provide die-off rates for E. coli on lettuce that can be used in future quantitative risk assessments.


1986 ◽  
Vol 49 (12) ◽  
pp. 944-951 ◽  
Author(s):  
J. E. KENNEDY ◽  
C. I. WEI ◽  
J. L. OBLINGER

The distribution of coliphages in various foods and the relationship between the incidences of coliphages and bacterial indicators were investigated. A total of 120 food samples comprising twelve products and including fresh meats, shellfish, vegetables and processed meats, were analyzed for indigenous coliphages using Escherichia coli hosts C, C-3000 and B. Bacterial analyses included enumeration of E. coli, fecal coliforms and coliforms, as well as aerobic plate counts and Salmonella analyses. Coliphages were detected (≥10 PFU/100 g) in 56% of samples and eleven of twelve products. Coliphages, E. coli, fecal coliforms and coliforms were recovered at a level of at least 30 organisms per 100 g in 43, 43, 68 and 81% of samples, with overall mean recoveries of 13, 19, 93 and 4300 organisms/100 g, respectively. Highest and lowest recoveries of coliphages and E. coli were from fresh meats and vacuum-packaged processed meats, respectively. Significant nonparametric correlations between coliphages, E. coli, fecal coliforms and coliforms were found among all food samples.


2000 ◽  
Vol 182 (2) ◽  
pp. 536-539 ◽  
Author(s):  
Justina Voulgaris ◽  
Dmitry Pokholok ◽  
W. Mike Holmes ◽  
Craig Squires ◽  
Catherine L. Squires

ABSTRACT Growth rate-independent rrn P1 promoter mutants were tested for their ability to respond to changes in rrn gene dosage. Most were found to be normal for the feedback response. In addition, cellular levels of the initiating nucleoside triphosphates remained unchanged when the rrn gene dosage was altered. These results suggest that the feedback response cannot be the mechanism for growth rate-dependent control of rRNA synthesis and that the relationship between these two processes may be more complicated than is currently understood.


1999 ◽  
Vol 77 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Clare N Gallagher ◽  
Reuben E Huber

M15 β-galactosidase (Escherichia coli) is a mutant form of β-galactosidase having residues 11-41 deleted. It is an inactive dimer but can be complemented to the active tetrameric form by the addition of a peptide containing the deleted residues. The activities of uncomplemented and complemented M15 β-galactosidases decreased starting at 42°C-uncomplemented over a narrow temperature range, complemented over a broad range. This is because uncomplemented protein is a simple dimer while complemented is a mix of interacting oligomers at high temperatures. The effects of added components on stability and α-complementation are best explained by binding effects on equilibria between native forms and forms susceptible to inactivation. Mg2+ stabilized complemented protein but destabilized uncomplemented protein (10× less Mg2+ was needed for complemented protein). α-Complementation increased somewhat at low Mg2+ but decreased at high Mg2+. These effects can be explained by differential Mg2+ binding to the native and susceptible forms. The enhancement of both stability and α-complementation by Na+ can be explained by preferential binding of Na+ to the native forms of both the uncomplemented and complemented proteins. Low 2-mercaptoethanol concentrations stabilized uncomplemented M15 β-galactosidase, but high concentrations destabilized it. All concentrations destabilized complemented M15 β-galactosidase. α-Complementation was enhanced by 2-mercaptoethanol. Thus, there is a correlation between stability of the uncomplemented protein and α-complementation at low 2-mercaptoethanol owing to interactions with native forms. The lack of correlation at higher 2-mercaptoethanol probably results from precipitation by 2-mercaptoethanol. In contrast to irreversible thermal inactivation, differences in reversible stability in urea were small. This suggests that quaternary structure and Mg2+ and Na+ sites are lost at low urea concentrations and are unimportant at the urea concentrations that result in reversible denaturation. Key words: β-galactosidase, α-complementation, stability.


1971 ◽  
Vol 123 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. W. Dale

1. The amino acid composition of the β-lactamase from E. coli (R-1818) was determined. 2. The R-1818 β-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The Km values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 β-lactamases is discussed.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Subhrajit Bhar ◽  
Tungadri Bose ◽  
Sharmila S. Mande

ABSTRACT Signal transduction systems are essential for microorganisms to respond to their ever-changing environment. They can be distinguished into one-component systems, two-component systems, and extracytoplasmic-function σ factors. Abundances of a few signal-transducing proteins, termed herein as sensory proteins (SPs), have previously been reported to be correlated with the genome size and ecological niche of certain Gram-positive bacteria. No such reports are available for Gram-negative bacteria. The current study attempts to investigate the relationship of the abundances of SPs to genome size in Escherichia coli, and the bacterial pathotypes or phylotypes. While the relationship between SP abundance and genome size could not be established, the sensory protein index (SPI), a new metric defined herein, was found to be correlated with E. coli virulence. In addition, significant association was observed among the distribution of SPs and E. coli pathotypes. Results indicate that such associations might be due to genomic rearrangements to best utilize the resources available in a given ecological niche. Overall, the study provides an in-depth analysis of the occurrence of different SPs among pathogenic and nonpathogenic E. coli strains. Possibilities of using the SPI as a marker for identifying pathogenic strains from among an organism complex are also discussed. IMPORTANCE Sensory proteins (SPs) act as sensors and actuators for a cell and participate in important mechanisms pertaining to bacterial survival, adaptation, and virulence. Therefore, bacterial species residing in similar ecological niches or those sharing common pathotypes are expected to exhibit similar SP signatures. We have investigated profiles of SPs in different species of Escherichia coli and present in this article the sensory protein index (SPI), a metric for quantifying the abundance and/or distribution of SPs across bacterial genomes, which could indicate the virulence potency of a bacterium. The SPI could find use in characterizing uncultured strains and bacterial complexes, as a biomarker for disease diagnostics, evaluating the effect of therapeutic interventions, assessing effects of ecological alterations, etc. Grouping the studied strains of E. coli on the basis of the frequency of occurrence of SPs in their genomes could potentially replicate the stratification of these strains on the basis of their phylotypes. In addition, E. coli strains belonging to the same pathotypes were also seen to share similar SP signatures. Furthermore, the SPI was seen to be an indicator of pathogenic potency of E. coli strains. The SPI metric is expected to be useful in the (pathogenic) characterization of hereto uncultured strains which are routinely sequenced in host microbiome analysis projects, or from among an ensemble of microbial organisms constituting a biospecimen. Thus, the possibilities of using the SPI as a biomarker for diagnosis of a disease or the outcome of a therapeutic intervention cannot be ruled out. Further, SPIs obtained from longitudinal ecological samples have the potential to serve as key indicators of environmental changes. Such changes in the environment are often detrimental to the resident biome and methods for timely detection of environmental changes hold huge socioeconomic benefits.


Sign in / Sign up

Export Citation Format

Share Document