scholarly journals CD19 CAR-Targeted T Cells Induce Long-Term Remission and B Cell Aplasia in an Immunocompetent Mouse Model of B Cell Acute Lymphoblastic Leukemia

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61338 ◽  
Author(s):  
Marco L. Davila ◽  
Christopher C. Kloss ◽  
Gertrude Gunset ◽  
Michel Sadelain
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asmaa M. Zahran ◽  
Azza Shibl ◽  
Amal Rayan ◽  
Mohamed Alaa Eldeen Hassan Mohamed ◽  
Amira M. M. Osman ◽  
...  

AbstractOur study aimed to evaluate the levels of MDSCs and Tregs in pediatric B-cell acute lymphoblastic leukemia (B-ALL), their relation to patients’ clinical and laboratory features, and the impact of these cells on the induction response. This study included 31 pediatric B-ALL patients and 27 healthy controls. All patients were treated according to the protocols of the modified St. Jude Children’s Research Hospital total therapy study XIIIB for ALL. Levels of MDSCs and Tregs were analyzed using flow cytometry. We observed a reduction in the levels of CD4 + T-cells and an increase in both the polymorphonuclear MDSCs (PMN-MDSCs) and Tregs. The frequencies of PMN-MDSCs and Tregs were directly related to the levels of peripheral and bone marrow blast cells and CD34 + cells. Complete postinduction remission was associated with reduced percentages of PMN-MDSCs and Tregs, with the level of PMN-MDCs in this subpopulation approaching that of healthy controls. PMN-MDSCs and Tregs jointly play a critical role in maintaining an immune-suppressive state suitable for B-ALL tumor progression. Thereby, they could be independent predictors of B-ALL progress, and finely targeting both PMN-MDSCs and Tregs may be a promising approach for the treatment of B-ALL.


2017 ◽  
Vol 39 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Keizo Horibe ◽  
Keiko Yumura-Yagi ◽  
Tooru Kudoh ◽  
Shinichiro Nishimura ◽  
Megumi Oda ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2418-2418
Author(s):  
Lori A. Ehrlich ◽  
Katherine S. Yang-Iott ◽  
Amy DeMicco ◽  
Craig H. Bassing

Abstract Abstract 2418 Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 2500 children per year. Although high cure rates have been achieved for ALL, these cancers account for the highest number of non-brain tumor cancer-related deaths in children. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature TCRβ−CD4+/CD8+ T-cells that represents ∼15% of pediatric ALL diagnoses, comprises most of the therapy-resistant ALL tumors, and exhibits a high frequency of relapse. The Ataxia Telangiectasia mutated (ATM) protein kinase activates the cellular response to DNA double strand breaks (DSBs) to coordinate DNA repair with cell survival, proliferation, and differentiation. Somatic inactivating ATM mutations occur in 10–20% of T-ALL and T cell lymphoblastic lymphoma (T-LL) tumors and are associated with resistance to genotoxic chemotherapy drugs and therapy relapse, likely driven by increased genomic instability in cells lacking functional ATM. The impaired DSB response of ATM-deficient cells can be exploited to design combinations of genotoxic drugs that specifically kill these cells in vitro. However, the in vivo potential of such drug combinations to treat T-ALL have not been reported. We sought to develop a pre-clinical mouse model that could be used to test effectiveness of such drug combinations to treat T-ALLs and T-LLs with somatic ATM inactivation. Although germline ATM-deficient (Atm−/−) mice succumb by six months of age to immature CD4+/CD8+ T-cell lymphomas containing genomic instability analogous to human T-ALL tumors, we sought a more physiologic model that would avoid potential complications due to ATM-deficiency in thymic epithelial cells. Thus, we generated and characterized VavCre:Atmflox/flox mice with conditional Atm inactivation restricted to hematopoietic cell lineages. These mice contain reduced numbers of TCRβ−CD4+/CD8+, TCRβ+CD4+/CD8−, and TCRβ+CD4−/CD8+ thymocytes and of TCRβ+CD4+ and TCRb+CD8+ splenic T-cells, mirroring the phenotype of Atm−/− mice. We have found that VavCre:Atmflox/flox mice succumb at an average of 95 days (range 53–183 days) to clonal TCRβ−CD4+/CD8+ or TCRβ+CD4−/CD8+ thymic lymphomas. Evaluation of the bone marrow in a subset of these mice indicates that the lymphoma has disseminated and are classified as leukemia. Our initial cytogenetic analyses of these tumors indicate that they contain both clonal translocations involving chromosome 12 and/or chromosome 14 and deletion of one allelic copy of the haploinsufficient Bcl11b tumor suppressor gene. Hemizygous BCL11B inactivation occurs in ∼20% of human T-ALL tumors, indicating the clinical relevance of VavCre:Atmflox/flox mice as a model for human T-ALL. Our ongoing studies include complete cytogenetic and molecular characterization of VavCre:Atmflox/flox tumors and in vivo testing of chemotherapeutics targeting the Atm pathway in this mouse model of T-ALL/T-LL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2613-2613
Author(s):  
Marco L Davila ◽  
Christopher Kloss ◽  
Renier J Brentjens ◽  
Michel Sadelain

Abstract Abstract 2613 Recent work by our group and others demonstrates the therapeutic potential of CD19-targeted T cells to treat patients with indolent B cell malignancies. These studies make use of T cells that are genetically engineered with chimeric antigen receptors (CARs) comprising an scFv fused to various T cell activating elements. Whereas firs-generation CARs only direct T cell activation, second-generation CARs include two signal elements, such as CD3z and CD28 signaling domains (19–28z). We and our colleagues at MSKCC are currently evaluating the safety of 19–28z-transduced T cells in patients with acute leukemia (B-ALL) in a Phase I protocol (NCT01044069). Pre-clinical studies performed to date have mostly relied on xenogeneic models utilizing immunodeficient animals, which enable the evaluation of human engineered T cells but do not recapitulate all the interactions that may affect tumor eradication by CAR-modified T cells. We have therefore developed a pre-clinical immunocompetent mouse model of B-ALL, and addressed therein the impact of conditioning and T cell dose on the eradication of leukemia by syngeneic, CAR-targeted T cells. To establish an immunocompetent mouse model of B cell leukemia, we generated a clone from the lymph node of an Eμ-myc B6 transgenic mouse. The immunophenotype and gene-expression profile of clone Eμ-ALL01 is consistent with a progenitor B cell origin. Syngeneic B6 mice inoculated with this clone develop florid acute leukemia and die approximately 2–4 weeks after injection from progressive bone marrow infiltration. We created an anti-mouse CD19 CAR comprising all murine elements, including the CD8 signal peptide, a CD19-specific single chain variable fragment, the CD8 transmembrane region, and the CD28 and CD3z signaling domains. Transduction of the murine 19–28z CAR into mouse T cells was robust and successfully retargeted the T cells to B cells. In vitro assays demonstrated that m19–28 z transduced T cells mediated effective killing of CD19-expressing target cells and the production of effector cytokines such as IFNγ and TNFα. Cyclophosphamide either alone or in combination with control syngeneic T cells is insufficient to eradicate established Eμ-ALL01 in B6 mice. However, treatment with cyclophosphamide and m19–28z-transduced T cells cured nearly all mice. Mice sacrificed six months after treatment exhibited a dramatic reduction of B cells in the bone marrow (BM), blood, and spleen. The few remaining B lineage cells found in the BM had a phenotype consistent with early pro-B cells, suggesting that endogenous reconstitution of the B cell compartment was thwarted by persisting, functional m19–28z+ T cells. Thus, T cells are retained at the site of antigen expression, which is maintained through regeneration of progenitor B cells. The persisting CD19-targeted T cells in the BM exhibited a cell surface phenotype consistent with effector and central memory cells. Using B cell aplasia as a surrogate endpoint for assessing in vivo T cell function and persistence, we evaluated how conditioning chemotherapy and T cell dose determine the level of B cell depletion induced by adoptively transferred CD19-targeted T cells. Overall, increasing the cyclophosphamide or T cell dose, increased the degree and duration of B cell depletion and the number of persisting CAR-modified T cells. Significantly, increasing the T cell dose at a set cyclophosphamide level had a lesser impact than increasing the conditioning intensity for a given T cell dose. In summary, the new Eμ-ALL01 syngeneic, immunocompetent B-ALL model we describe here is a valuable tool for modeling CD19 CAR therapies. Our results indicate that m19–28z transduced T cells are effective at eradicating B-ALL tumor cells and persist long-term, preferentially in bone marrow. Our findings further establish that conditioning intensity and T cell dose directly determine B cell elimination and long-term T cell persistence. These studies in mice will serve as an important framework to further model and perfect our studies in patients with B-ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 474-474
Author(s):  
Regina M. Myers ◽  
Kaitlin Devine ◽  
Yimei Li ◽  
Sophie Lawrence ◽  
Allison Barz Leahy ◽  
...  

Abstract Background: CAR-modified T cells targeting CD19 have produced remarkable responses in relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL); however, relapse continues to be a substantial challenge. CD19+ relapses, which account for 33-78% of relapses, are associated with loss of CAR T-cell surveillance due to short persistence. Thus, strategies to improve functional persistence to prevent and treat CD19+ relapsed disease are crucial. Here, we report our experience administering reinfusions of murine or humanized 4-1BB CD19 CAR T cells in an effort to prolong persistence in patients with demonstrated short persistence to mitigate relapse risk, treat CD19+ relapsed disease, and produce responses after nonresponse to initial CAR infusion. Methods: This analysis included patients aged <30 years treated with a murine CD19 CAR construct, either investigational CTL019 (NCT01626495, NCT02906371) or commercial tisagenlecleucel, or a humanized CD19 CAR construct, huCART19 (NCT02374333), who received ≥1 reinfusion of the same CAR product due to: 1) clinical signs of poor persistence within 6 months (mos) of initial infusion, including peripheral B-cell recovery (BCR) or CD19+ hematogones in the bone marrow, 2) new CD19+ minimal residual disease (MRD) or relapse, or 3) nonresponse to initial infusion. The huCART19 trial included patients who had previously received a CAR T cell product (CAR-exposed), whereas all patients reinfused with CTL019/tisagenlecleucel were CAR-naïve at initial infusion. The primary outcome was complete response (CR) at day 28 after reinfusion, defined as complete remission with establishment or maintenance of B-cell aplasia. Secondary outcomes included CRS incidence, cumulative incidence of relapse (CIR) and overall survival (OS). Results: Among 229 CAR-naïve and 33 CAR-exposed patients treated with CD19 CAR between 2012-2020, 81 received ≥1 reinfusion (investigational CTL019, n=44; commercial tisagenlecleucel, n=11; huCART19, n=13 CAR-naïve and n=13 CAR-exposed). In addition, 18 patients received PD-1 blockade after their first (n=11) or subsequent (n=7) reinfusions. Indications for first reinfusion were peripheral BCR (CAR-naïve, n=32; CAR-exposed, n=6), hematogones (CAR-naïve, n=21; CAR-exposed, n=4), CD19+ MRD/relapse (CAR-naïve, n=10, CAR-exposed, n=0), and nonresponse to initial infusion (CAR-naïve, n=5, CAR-exposed, n=3). CRS grade ≥2 (Penn scale) occurred in 19 patients (grade 2, n=13; grade 3, n=4; grade 4, n=2). Grade 3-4 events only occurred in patients with active disease at time of reinfusion. Twenty-two patients had an inpatient admission within 30 days of first reinfusion, of which 7 required intensive care unit admission Among the 63 patients reinfused for relapse prevention, 33 (52%) had a CR at day 28. With a median duration of follow-up of 38 mos, 13 experienced a subsequent relapse (7 CD19+, 4 CD19-, 2 CD19-subset negative), 4 received alternative therapy or allogeneic hematopoietic stem cell transplantation (HSCT) in remission, and 16 remain in remission without further therapy at a median of 39 mos after first reinfusion. The median duration of B-cell aplasia was 8 mos (IQR 2-35) after reinfusion. Of the 30 with no response (NR), 10 had a subsequent CD19+ relapse, 15 received alternative therapy or HSCT, and 5 remain in remission without further therapy at a median of 43 mos after reinfusion. CIR and OS were not statistically significantly different between patients with CR or NR (CIR, p=0.26; OS, p=0.25) (Figure A-B). However, at 24 mos after reinfusion, CIR was 29% (95% CI, 11-44%) for CR compared to 61% (95% CI, 24-80%) for NR; OS was 90% (95% CI, 80-100%) for both groups. Of the 10 patients reinfused for relapse, 5 (50%) had a CR; 2 subsequently experienced a CD19+ relapse, 2 received an HSCT in remission, and 1 remains in remission without further therapy at 18 mos after reinfusion. Of the 8 patients reinfused for nonresponse to initial infusion, 7 were evaluable; none had a CR, and all died at a median of 2.5 mos after reinfusion. Conclusions: Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may prolong B-cell aplasia in patients with short CAR persistence and reduce relapse risk, and can induce remissions in patients with CD19+ relapsed disease. Thus, reinfusion may provide an alternative to HSCT for short persistence. However, reinfusion is not effective for patients with nonresponse to initial CAR infusion. Figure 1 Figure 1. Disclosures Callahan: Novartis: Speakers Bureau. Rheingold: Optinose: Other: Spouse's current employment; Pfizer: Research Funding. June: Tmunity, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Current equity holder in publicly-traded company; Novartis: Patents & Royalties; AC Immune, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Consultancy. Grupp: Novartis, Roche, GSK, Humanigen, CBMG, Eureka, and Janssen/JnJ: Consultancy; Novartis, Adaptimmune, TCR2, Cellectis, Juno, Vertex, Allogene and Cabaletta: Other: Study steering committees or scientific advisory boards; Novartis, Kite, Vertex, and Servier: Research Funding; Jazz Pharmaceuticals: Consultancy, Other: Steering committee, Research Funding. Maude: Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Wugen: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document