scholarly journals Dietary Quercetin Supplementation in Mice Increases Skeletal Muscle PGC1α Expression, Improves Mitochondrial Function and Attenuates Insulin Resistance in a Time-Specific Manner

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89365 ◽  
Author(s):  
Tara M. Henagan ◽  
Natalie R. Lenard ◽  
Thomas W. Gettys ◽  
Laura K. Stewart
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1891-P
Author(s):  
THERESIA SARABHAI ◽  
CHRYSI KOLIAKI ◽  
SABINE KAHL ◽  
DOMINIK PESTA ◽  
LUCIA MASTROTOTARO ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Karla Elzein Merz ◽  
Rajakrishnan Veluthakal ◽  
Erika M Olson ◽  
Angelica Hamilton ◽  
Eunjin Oh ◽  
...  

2021 ◽  
pp. jim-2021-001966
Author(s):  
Stephanie Cung ◽  
Laura Pyle ◽  
Kristin Nadeau ◽  
Dana Dabelea ◽  
Melanie Cree-Green ◽  
...  

Klinefelter syndrome (XXY) occurs in 1 in 600 males, resulting in testosterone deficiency and a high prevalence of insulin resistance. Testosterone deficiency in men is a known cause of insulin resistance, and mitochondrial dysfunction is hypothesized to mediate this relationship. The aim of this cross-sectional study was to evaluate muscle mitochondrial function in XXY compared with male controls. Twenty-seven boys with XXY (age 14.7±1.8 years) were compared with 87 controls (age 16.9±0.9). In-vivo calf muscle mitochondrial function was assessed via phosphorus magnetic resonance spectroscopy (31P-MRS) following 90 s of isometric 70% maximal exercise. Multiple linear regression was used to compare 31P-MRS outcomes (ADP and phosphocreatine (PCr) time constants, rate of oxidative phosphorylation (Oxphos), and Qmax or the maximal mitochondrial function relative to mitochondrial density) between groups after adjusting for age differences. There were no statistically significant differences in the mitochondrial outcomes of ADP, Oxphos, PCr, and Qmax between the groups. There were also no differences in a sensitivity analysis within the XXY group by testosterone treatment status. In this study, in-vivo postexercise skeletal muscle mitochondrial function does not appear to be impaired in adolescents with XXY compared with controls and is not significantly different by testosterone treatment status in XXY.


Diabetologia ◽  
2017 ◽  
Vol 60 (8) ◽  
pp. 1491-1501 ◽  
Author(s):  
Helena C. Kenny ◽  
Floriane Rudwill ◽  
Laura Breen ◽  
Michele Salanova ◽  
Dieter Blottner ◽  
...  

2009 ◽  
Vol 94 (12) ◽  
pp. 4923-4930 ◽  
Author(s):  
Amy Fleischman ◽  
Matthew Kron ◽  
David M. Systrom ◽  
Mirko Hrovat ◽  
Steven K. Grinspoon

Background: Obesity has become an epidemic in children, associated with an increase in insulin resistance and metabolic dysfunction. Mitochondrial function is known to be an important determinant of glucose metabolism in adults. However, little is known about the relationship between mitochondrial function and obesity, insulin resistance, energy expenditure, and pubertal development in children. Methods: Seventy-four participants, 37 overweight (≥85th percentile body mass index for age and sex) and 37 normal-weight (<85th percentile) without personal or family history of diabetes mellitus were enrolled. Subjects were evaluated with an oral glucose tolerance test, metabolic markers, resting energy expenditure, Tanner staging, and 31P magnetic resonance spectroscopy of skeletal muscle for mitochondrial function. Results: Overweight and normal-weight children showed no difference in muscle ATP synthesis [phosphocreatine (PCr) recovery after exercise] (32.4 ± 2.3 vs. 34.1 ± 2.1, P = 0.58). However, insulin-resistant children had significantly prolonged PCr recovery when compared with insulin-sensitive children, by homeostasis model assessment for insulin resistance quartile (ANOVA, P = 0.04). Similarly, insulin-resistant overweight children had PCr recovery that was prolonged compared with insulin-sensitive overweight children (P = 0.01). PCr recovery was negatively correlated with resting energy expenditure in multivariate modeling (P = 0.03). Mitochondrial function worsened during mid-puberty in association with insulin resistance. Conclusion: Reduced skeletal muscle mitochondrial oxidative phosphorylation, assessed by PCr recovery, is associated with insulin resistance and an altered metabolic phenotype in children. Normal mitochondrial function may be associated with a healthier metabolic phenotype in overweight children. Further studies are needed to investigate the long-term physiological consequences and potential treatment strategies targeting children with reduced mitochondrial function.


2008 ◽  
Vol 93 (10) ◽  
pp. 3885-3892 ◽  
Author(s):  
Charlotte Brøns ◽  
Christine B. Jensen ◽  
Heidi Storgaard ◽  
Amra Alibegovic ◽  
Stine Jacobsen ◽  
...  

Objective: Low birth weight (LBW) is an independent risk factor of insulin resistance and type 2 diabetes. Recent studies suggest that mitochondrial dysfunction and impaired expression of genes involved in oxidative phosphorylation (OXPHOS) may play a key role in the pathogenesis of insulin resistance in aging and type 2 diabetes. The aim of this study was to determine whether LBW in humans is associated with mitochondrial dysfunction in skeletal muscle. Methods: Mitochondrial capacity for ATP synthesis was assessed by 31phosphorus magnetic resonance spectroscopy in forearm and leg muscles in 20 young, lean men with LBW and 26 matched controls. On a separate day, a hyperinsulinemic euglycemic clamp with excision of muscle biopsies and dual-energy x-ray absorptiometry scanning was performed. Muscle gene expression of selected OXPHOS genes was determined by quantitative real-time PCR. Results: The LBW subjects displayed a variety of metabolic and prediabetic abnormalities, including elevated fasting blood glucose and plasma insulin levels, reduced insulin-stimulated glycolytic flux, and hepatic insulin resistance. Nevertheless, in vivo mitochondrial function was normal in LBW subjects, as was the expression of OXPHOS genes. Conclusions: These data support and expand previous findings of abnormal glucose metabolism in young men with LBW. In addition, we found that the young, healthy men with LBW exhibited hepatic insulin resistance. However, the study does not support the hypothesis that muscle mitochondrial dysfunction per se is the underlying key metabolic defect that explains or precedes whole body insulin resistance in LBW subjects at risk for developing type 2 diabetes.


2012 ◽  
Vol 11 (1) ◽  
pp. 30 ◽  
Author(s):  
Amanda R Martins ◽  
Renato T Nachbar ◽  
Renata Gorjao ◽  
Marco A Vinolo ◽  
William T Festuccia ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Robert Eckel

Lipoprotein lipase (LPL) is a multifunctional enzyme produced by and studied in many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. After synthesis by parenchymal cells, the lipase is transported to the capillary endothelium, where it is rate-limiting for the hydrolysis of the triglyceride (TG) core of the circulating TG-rich lipoproteins, chylomicrons, and very low density lipoproteins (VLDL). The reaction products, fatty acids and monoacylglycerol, are in part taken up by the tissues locally, where they are processed in a tissue-specific manner, e.g., stored as neutral lipids (TG > cholesteryl esters[CE]) in adipose tissue, oxidized or stored in muscle, or as CE/TG in foam cells in macrophages. LPL is regulated in a tissue-specific manner. In adipose tissue, LPL is increased by insulin and meals but decreased by fasting, whereas muscle LPL is decreased by insulin and increased by fasting. In obesity, adipose tissue LPL is increased; however, the insulin dose-response curve is shifted to the right. After weight reduction and stabilization of the reduced obese state, adipose tissue LPL is increased, as is the response of the enzyme to insulin and meals. In skeletal muscle, insulin does not stimulate LPL nor is the enzyme activity changed in obesity; however, after weight reduction, LPL in skeletal muscle is decreased by 70%. These tissue-specific changes in LPL set the stage for lipid partitioning to help explain the recidivism of obesity. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle develop TG accumulation in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. When placed onto the LPL knockout and leptin deficient background, overexpression of LPL using an MCK promoter reduces obesity. Alternatively, a deletion of LPL in skeletal muscle reduces TG accumulation and increases insulin-mediated glucose transport into muscle but leads to lipid partitioning to other tissues, insulin resistance, and obesity. In the heart, loss of LPL is associated with hypertriglyceridemia and a greater utilization of glucose, implying that free fatty acids are not a sufficient fuel for optimal cardiac function. LPL is also produced in the brain, and that’s where the “story gets even more interesting.” We have just created mice with a neuron-specific deletion of LPL (NEXLPL−/−) using cre recombinase driven by the helix-loop-helix nuclear transcription factor NEX promoter. By 6 months of age, NEXLPL−/− mice weigh 50% more than their litter mates. This phenotype provides convincing evidence that lipoprotein sensing occurs in the brain and is important to energy balance and body weight regulation. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and to the many aspects of metabolism that relate to cardiovascular disease, including energy metabolism, insulin action, body weight regulation, and atherosclerosis.


Diabetes Care ◽  
2009 ◽  
Vol 32 (4) ◽  
pp. 677-679 ◽  
Author(s):  
J. Szendroedi ◽  
A. I. Schmid ◽  
M. Meyerspeer ◽  
C. Cervin ◽  
M. Kacerovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document