scholarly journals Staphylococcus aureus Manganese Transport Protein C (MntC) Is an Extracellular Matrix- and Plasminogen-Binding Protein

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112730 ◽  
Author(s):  
Natália Salazar ◽  
Mónica Marcela Castiblanco-Valencia ◽  
Ludmila Bezerra da Silva ◽  
Íris Arantes de Castro ◽  
Denize Monaris ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149638 ◽  
Author(s):  
Hui-Jie Yang ◽  
Jin-Yong Zhang ◽  
Chao Wei ◽  
Liu-Yang Yang ◽  
Qian-Fei Zuo ◽  
...  

2001 ◽  
Vol 183 (23) ◽  
pp. 6778-6786 ◽  
Author(s):  
Muzaffar Hussain ◽  
Karsten Becker ◽  
Christof von Eiff ◽  
Jacques Schrenzel ◽  
Georg Peters ◽  
...  

ABSTRACT The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureusdisease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR,emp was demonstrated in all 240 S. aureusisolates of a defined clinical strain collection as well as in 6S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a K d of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureuspathogenicity.


1993 ◽  
Vol 61 (6) ◽  
pp. 2479-2485 ◽  
Author(s):  
M H McGavin ◽  
D Krajewska-Pietrasik ◽  
C Rydén ◽  
M Höök

Author(s):  
Bashir Alaour ◽  
Torbjørn Omland ◽  
Janniche Torsvik ◽  
Thomas E. Kaier ◽  
Marit S. Sylte ◽  
...  

Abstract Objectives Cardiac myosin-binding protein C (cMyC) is a novel biomarker of myocardial injury, with a promising role in the triage and risk stratification of patients presenting with acute cardiac disease. In this study, we assess the weekly biological variation of cMyC, to examine its potential in monitoring chronic myocardial injury, and to suggest analytical quality specification for routine use of the test in clinical practice. Methods Thirty healthy volunteers were included. Non-fasting samples were obtained once a week for ten consecutive weeks. Samples were tested in duplicate on the Erenna® platform by EMD Millipore Corporation. Outlying measurements and subjects were identified and excluded systematically, and homogeneity of analytical and within-subject variances was achieved before calculating the biological variability (CVI and CVG), reference change values (RCV) and index of individuality (II). Results Mean age was 38 (range, 21–64) years, and 16 participants were women (53%). The biological variation, RCV and II with 95% confidence interval (CI) were: CVA (%) 19.5 (17.8–21.6), CVI (%) 17.8 (14.8–21.0), CVG (%) 66.9 (50.4–109.9), RCV (%) 106.7 (96.6–120.1)/−51.6 (−54.6 to −49.1) and II 0.42 (0.29–0.56). There was a trend for women to have lower CVG. The calculated RCVs were comparable between genders. Conclusions cMyC exhibits acceptable RCV and low II suggesting that it could be suitable for disease monitoring, risk stratification and prognostication if measured serially. Analytical quality specifications based on biological variation are similar to those for cardiac troponin and should be achievable at clinically relevant concentrations.


Sign in / Sign up

Export Citation Format

Share Document