scholarly journals Detection of Powdery Mildew in Two Winter Wheat Plant Densities and Prediction of Grain Yield Using Canopy Hyperspectral Reflectance

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121462 ◽  
Author(s):  
Xueren Cao ◽  
Yong Luo ◽  
Yilin Zhou ◽  
Jieru Fan ◽  
Xiangming Xu ◽  
...  
1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2013 ◽  
Vol 45 ◽  
pp. 124-131 ◽  
Author(s):  
Xueren Cao ◽  
Yong Luo ◽  
Yilin Zhou ◽  
Xiayu Duan ◽  
Dengfa Cheng

2001 ◽  
Vol 52 (5) ◽  
pp. 573 ◽  
Author(s):  
J. A. Palta ◽  
S. Peltzer

The effect of timing of annual ryegrass (Lolium rigidum) emergence on the uptake and utilisation of N by wheat was investigated in a field trial on a duplex soil at Katanning, Western Australia, and in a glasshouse study in which 15N-fertiliser was applied. Three treatments were used to investigate the effect of timing of annual ryegrass emergence on the uptake and utilisation of N by wheat: simultaneous sowing of wheat and annual ryegrass, sowing of annual ryegrass 1 week before wheat, and sowing of the annual ryegrass 1 week after wheat. A control treatment, consisting of wheat sown alone, was also included. Plant densities during the field trial were 105 and 140 plants/m2 for wheat and annual ryegrass, respectively, whereas in the glasshouse they were 105 plants/m2 for wheat and 155 plants/m2 for annual ryegrass. Fertiliser-N was applied at seeding of wheat at 50 kg N/ha in the field trial and 60 kg N/ha in the glasshouse. The introduction of annual ryegrass into the wheat system reduced the production of biomass and the grain yield of wheat. The earlier the annual ryegrass was introduced into the system, the greater the reduction in the biomass and grain yield of wheat. Poor tillering and slow rates of growth were accountable for the reduction in biomass, whilst the reduction in wheat grain yield was caused by the reductions in ear number, kernels per ear, and kernel size. Grain N content and hence grain protein was also reduced by the introduction of annual ryegrass into the wheat system. Irrespective of the timing of introduction of annual ryegrass, the low N uptake of wheat resulted from a reduction in the uptake of both soil and fertiliser-N. This indicates that annual ryegrass competed with wheat not only for the fertiliser-N that was applied at seeding of wheat, but also for mineralised soil N. The competition for N reduced the total recoveries of fertiliser-N in the wheat plant. Total recoveries of fertiliser-N in the wheat plant suggest that 59% of the fertiliser-N was not taken up by wheat when annual ryegrass was sown 1 week earlier than wheat or at the same time as wheat, whereas only 32% was not taken up by the wheat when annual ryegrass was sown 1 week later than wheat. More competitive wheat genotypes would be those with better efficiency in the uptake of N and its utilisation in maintaining yield and grain protein under infestations of annual ryegrass.


2015 ◽  
Vol 95 (5) ◽  
pp. 1033-1035
Author(s):  
Lily Tamburic-Ilincic ◽  
Arend Smid

Tamburic-Ilincic, L. and Smid, A. 2015. UGRC Ring, soft red winter wheat. Can. J. Plant Sci. 95: 1033–1035. UGRC Ring is a soft red winter wheat (Triticum aestivum L.) cultivar registered for Ontario, Canada. It has high grain yield, with good pastry quality (high flour yield, high falling number) and is moderately resistant to powdery mildew. UGRC Ring has good winter hardiness and is well adapted for the winter wheat growing areas of Ontario.


2015 ◽  
Vol 72 (1) ◽  
pp. 33-53
Author(s):  
Janusz Kozdój ◽  
Dariusz R. Mańkowski ◽  
Monika Godzina-Sawczuk ◽  
Andrzej Czaplicki

AbstractThe yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI), located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively). The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively). The grain yield per winter wheat plant (both DH lines and standard Izolda) was significantly correlated with the number of productive tillers per plant (r = 0.80). The grain yield per winter wheat spike (both DH lines and Izolda cultivar) was significantly and highly correlated with the number of grains per spike (r = 0.96), number of fertile spikelets per spike (r = 0.87) and the spike length (r = 0.80). Variation of spike and plant structural yield-forming factors determining grain yield levels were also analyzed. Calculated total variation coefficients values of each analyzed trait during three-year long studies were different depending on plant material – DH lines or standard Izolda. Low variation coefficients values characterized following traits (traits ranked by increasing values for DH lines and standard Izolda, respectively): total spikelets number per spike (6.6 and 6.3%), spike length (11.1 and 12.6%), fertile spikelets number per spike (13.7 and 11.7%), single grain weight (15.0 and 12.2%), shoot length (16.2 and 13.3%), grains number per spikelet (26.4 and 23.3%), total shoots number per plant (23.4 and 29.6%), grains number per spike (30.1 and 28.2%). Higher variation coefficients values were obtained for the following traits: grain yield per spike (40.0 and 35.7%), plant immature tillers number (35.8 and 42.6%), plant productive tillers number (42.2 and 43.2%), spike sterile spikelets number (46.6 and 44.7%) and number of grains per plant (58.3 and 60.5%). The highest values characterized grain yield per plant (66.9 and 60.8%).


1980 ◽  
Vol 28 (3) ◽  
pp. 156-163 ◽  
Author(s):  
A. Darwinkel

The pattern of grain production of a winter wheat crop and the effect of plant density and time of tiller emergence on grain yield/ear were studied. At harvest, ear size and ear components were ascertained and were discussed in relation to ear growth and ear development during the prefloral and postfloral growing period. Detailed information was obtained on the productivity of ear-bearing tillers and their contribution to final grain yield. Shoot productivity decreased in denser crops; ears were smaller because spikelet differentiation, grain set and grain filling were inadequate. The date that the tiller emerged largely determined its subsequent grain yield. With later tiller initiation and emergence fewer ears were produced. Moreover, these ears were smaller because spikelet initiation, spikelet differentiation, grain set and grain filling were reduced. At low and moderate plant densities, the grain yield of the early-emerged tillers only slightly lagged behind that of main shoots and max. grain yield could be achieved at moderate plant densities. It was concluded that in cereal farming, high and stable grain yields are aims to be achieved. These can be best achieved by having moderate plant densities and applying correct treatments for good crop growth. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document