scholarly journals The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130135 ◽  
Author(s):  
Ying-Pei Liu ◽  
Hai-Ping Liang ◽  
Zhong-Ke Gao
2018 ◽  
Vol 41 (3) ◽  
pp. 701-716 ◽  
Author(s):  
Mohamed Ayari ◽  
Mohamed Moez Belhaouane ◽  
Chaker Jammazi ◽  
Naceur Benhadj Braiek ◽  
Xavier Guillaud

This paper presents the finite time stabilisation strategy of two problems: the first one is the control of the high voltage direct current based on voltage source converter, while the second is the control of the multi-terminal direct current transmission systems. Subject to finite-time control design strategy, a linear and nonlinear dynamic model are derived based on the state-space description. Furthermore, continuous or discontinuous finite-time feedbacks are proposed to ensure the tracking of the output variables and to enhance the stability of the studied high voltage direct current system. In addition, the proposed control strategy is extended for the multi-terminal direct current system. A comparative study between various approaches (Proportional-Integral control, continuous or discontinuous stabilising finite-time controllers and control by backstepping) is presented and shows that the finite-time continuous feedback gives an excellent transient response.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Guo-Jie Li ◽  
Si-Ye Ruan ◽  
Tek Lie

AbstractA multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on “dc voltage droop” power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document