scholarly journals Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.)

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0141540 ◽  
Author(s):  
Bin Han ◽  
Changbiao Wang ◽  
Zhaohui Tang ◽  
Yongkang Ren ◽  
Yali Li ◽  
...  
2000 ◽  
Vol 18 (3) ◽  
pp. 243-253 ◽  
Author(s):  
Yasunari Ogihara ◽  
Kazuriho Isono ◽  
Toshio Kojima ◽  
Akira Endo ◽  
Mitsumasa Hanaoka ◽  
...  

2000 ◽  
Vol 10 (1) ◽  
pp. 51-60 ◽  
Author(s):  
R.L Warner ◽  
D.A. Kudrna ◽  
S.C. Spaeth ◽  
S.S. Jones

AbstractRed wheats (Triticum aestivum L.) are generally more dormant and sprout resistant than white wheats. Whether this is caused by pleiotropic effectsof the red grain colour genes (R) on dormancy and coat colour, or to tight linkage between R and dormancy genes has not been fully resolved. To directly determine the effect of the R1 allele on dormancy, mutations were induced with sodium azide in a pure line selection of the red genotype (R1R1r2r2r3r3) Chinese Spring wheat. Two white mutants (CSW01, CSW02) were recovered from M3 caryopses derived from approximately 20,000 M2 plants. Both mutants were shown to be allelic to a domesticwhite genotype (r1r1r2r2r3r3). Except for seed coat colour, CSW01 and CSW02 are morphologically indistinguishable from the wild type and are presumed to be near isogenic lines of Chinese Spring. Freshly harvested grainsproduced under four different environments were evaluated for post-harvest dormancy. In all environments, intact caryopses of all three isolines exhibited high temperature dormancy typical of cereal species, although the red wild type consistently exhibited greater dormancy than the white mutant isolines. Dormancy was dissipated by afterripening in dry storage at 37°C in a similar manner for the red and white isolines. Excised embryos of the three isolines exhibited similar levels of dormancy and sensitivities to exogenous abscisic acid. These results indicate a functional R1 allele is not absolutely required for dormancy in wheat, but does enhance its expression in caryopses with dormant (sensitive) embryos


Genome ◽  
1991 ◽  
Vol 34 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Ernest D. P. Whelan

Winter wheat (Triticum aestivum L.) requires vernalization (exposure to temperatures between 1 and 10 °C) to induce heading. Vernalization also induces earlier heading of many spring wheat varieties. Studies of the spring wheat cv. Chinese Spring identified cytogenetic lines of the group 6 chromosomes that were susceptible to chilling injury when seedlings were grown at 6 °C for 8 weeks. Lines that were either ditelocentric for the long arm of chromosome 6D or nullisomic for 6D were susceptible, while those ditelocentric for the short arm of 6D were not. Neither cv. Chinese Spring nor ditelocentrics for either the long or short arms of chromosomes 6A or 6B were susceptible. Susceptible plants selected from F2 seedlings of plants monosomic for 6D were nullisomics. Doublemonotelocentric F1 hybrids from crosses between plants ditelocentric for 6DS or 6DL were resistant, but susceptible F2 seedlings from this cross were either nullisomic for 6D or telocentric for the long arm. The dominant gene(s) that prevents chilling injury at 6 °C appears to be on the short arm of chromosome 6D of cv. Chinese Spring wheat.Key words: chilling injury, wheat, telocentrics, nullisomics, vernalization.


Genome ◽  
1990 ◽  
Vol 33 (1) ◽  
pp. 9-12 ◽  
Author(s):  
J. P. Gustafson ◽  
K. Ross

The expression of aluminum tolerance from rye (Secale cereale L.) when present in a wheat (Triticum aestivum L. em. Thell.) background has been observed to be much lower than that in rye itself. By crossing each of the ditelocentric lines of 'Chinese Spring' wheat with a tolerant rye, the effects of the presence or absence of each arm of wheat on the expression of rye aluminum tolerance could be established. Of 42 wheat chromosome arms, 18 affected the expression of rye aluminum tolerance. Tolerance was increased over that observed in the euploid wheat–rye hybrid when arms 4AL, 5AL, 6AL, 7BS, 7BL, and 3DS were absent. Tolerance was reduced when arms 2AL, 5AS, 6BS, 1DS, 1DL, 2DL, 4DL, 5DS, 5DL, 6DL, 7DS, and 7DL were absent. Thus, the control of aluminum tolerance expression from rye in a wheat background was evidently under the influence of genes located on a number of wheat chromosome arms, with a few arms tending to enhance expression and many others tending to reduce it. In fact, 5AS of 'Chinese Spring' enhances expression, while 5AL suppresses it. The D genome of bread wheat appears to have the most pronounced effect on the expression of rye aluminum tolerance.Key words: rye, activator genes, suppressor genes, alien manipulation.


1986 ◽  
Vol 28 (4) ◽  
pp. 624-627 ◽  
Author(s):  
P. K. Gupta ◽  
George Fedak

Two groups of three-way hybrids were produced by crossing F1 hybrids of 'Petkus' × 'Prolific' rye (2n = 14) and 'Prolific' × 'Puma' rye (2n = 14) onto 'Chinese Spring' wheat (2n = 42). Meiosis was studied in 89 plants from 29 families from the first combination and in 36 plants from 11 families in the second cross. In three families from the first combination ('Petkus' × 'Prolific') five partial amphiploids with chromosome numbers of 2n = 35, 36, 36, 38, and 41 were identified. The mean bivalent frequencies in five hybrids were 6.71, 7.73, 8.10, 9.94, and 13.00, suggesting that the number of bivalents was generally equal to the number of chromosomes in excess of the expected chromosome number of 2n = 28. These five plants were partial or incomplete amphiploids and their origin was attributed to duplication of a portion of the wheat complement after fertilization.Key words: partial amphiploids, hybrids (intergeneric), Triticum, Secale, chromosome pairing.


1982 ◽  
Vol 24 (2) ◽  
pp. 227-233 ◽  
Author(s):  
George Fedak ◽  
Perry Y. Jui

Chromosome substitution lines of the variety Hope in Chinese Spring (Triticum aestivum L.) were crossed onto Betzes barley (Hordeum vulgare L. emend. Lam.). Three substitution lines of Hope involving chromosomes 5A, 5B, 5D gave no seed-set indicating that their counterparts in Chinese Spring were responsible for crossability with barley and that they function in complementary fashion. Other chromosomes of Hope had minor effects on crossability with barley.


Sign in / Sign up

Export Citation Format

Share Document