scholarly journals Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD)

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142633 ◽  
Author(s):  
Afshin Hosseini ◽  
Muhammad Rizwan Tariq ◽  
Fernanda Trindade da Rosa ◽  
Julia Kesser ◽  
Zeeshan Iqbal ◽  
...  
2012 ◽  
Vol 302 (3) ◽  
pp. E365-E373 ◽  
Author(s):  
Richard A. M. Jonkers ◽  
Marlou L. Dirks ◽  
Christine I. H. C. Nabuurs ◽  
Henk M. De Feyter ◽  
Stephan F. E. Praet ◽  
...  

Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using1H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls ( P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.


2018 ◽  
Vol 43 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Dongmei Liu ◽  
Flor Elisa Morales ◽  
Heidi. B. IglayReger ◽  
Mary K. Treutelaar ◽  
Amy E. Rothberg ◽  
...  

Local inflammation in obese adipose tissue has been shown to contribute to insulin resistance; however, the role of macrophage infiltration within skeletal muscle is still debatable. This study aimed to evaluate the association of skeletal muscle macrophage gene expression with adiposity levels and insulin sensitivity in obese patients. Twenty-two nondiabetic obese patients and 23 healthy lean controls were included. Obese patients underwent a 3-month weight loss intervention. Macrophage gene expression in skeletal muscle (quantitative real-time polymerase chain reaction), body composition (dual-energy X-ray absorptiometry), and insulin sensitivity (homeostatic model assessment (HOMA) and oral glucose tolerance test) were compared between groups and their associations were analyzed. To validate skeletal muscle findings, we repeated the analyses with macrophage gene expression in adipose tissue. Expression levels of macrophage genes (CD68, CD11b, CD206, CD16, CD40, and CD163) were lower in skeletal muscle tissue of obese versus lean participants. Macrophage gene expression was also found to be inversely associated with adiposity, fasting insulin, and HOMA (r = −0.4 ∼ −0.6, p < 0.05), as well as positively associated with insulin sensitivity (r = 0.4 ∼ 0.8, p < 0.05). On the other hand, adipose tissue macrophage gene expression showed higher levels in obese versus lean participants, presenting a positive association with adiposity levels. Macrophage gene expression, in both skeletal and adipose tissue samples, was only minimally affected by the weight loss intervention. In contrast with the established positive relationship between adiposity and macrophage gene expression, an unexpected inverse correlation between these 2 variables was observed in skeletal muscle tissue. Additionally, muscle macrophage gene expression was inversely correlated with insulin resistance.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-575 ◽  
Author(s):  
Bastiaan J. van Nierop ◽  
Anke Stekelenburg ◽  
Sandra Loerakker ◽  
Cees W. Oomens ◽  
Dan Bader ◽  
...  

2011 ◽  
Vol 94 (2) ◽  
pp. 808-823 ◽  
Author(s):  
R.A. Law ◽  
F.J. Young ◽  
D.C. Patterson ◽  
D.J. Kilpatrick ◽  
A.R.G. Wylie ◽  
...  

2005 ◽  
Vol 23 (7) ◽  
pp. 879-884 ◽  
Author(s):  
Shulamit Levenberg ◽  
Jeroen Rouwkema ◽  
Mara Macdonald ◽  
Evan S Garfein ◽  
Daniel S Kohane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document