scholarly journals Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0165521 ◽  
Author(s):  
Oscar Miguel-Hurtado ◽  
Richard Guest ◽  
Sarah V. Stevenage ◽  
Greg J. Neil ◽  
Sue Black
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chong Hyun Suh ◽  
Kyung Hwa Lee ◽  
Young Jun Choi ◽  
Sae Rom Chung ◽  
Jung Hwan Baek ◽  
...  

Abstract We investigated the ability of machine-learning classifiers on radiomics from pre-treatment multiparametric magnetic resonance imaging (MRI) to accurately predict human papillomavirus (HPV) status in patients with oropharyngeal squamous cell carcinoma (OPSCC). This retrospective study collected data of 60 patients (48 HPV-positive and 12 HPV-negative) with newly diagnosed histopathologically proved OPSCC, who underwent head and neck MRIs consisting of axial T1WI, T2WI, CE-T1WI, and apparent diffusion coefficient (ADC) maps from diffusion-weighted imaging (DWI). The median age was 59 years (the range being 35 to 85 years), and 83.3% of patients were male. The imaging data were randomised into a training set (32 HPV-positive and 8 HPV-negative OPSCC) and a test set (16 HPV-positive and 4 HPV-negative OPSCC) in each fold. 1618 quantitative features were extracted from manually delineated regions-of-interest of primary tumour and one definite lymph node in each sequence. After feature selection by using the least absolute shrinkage and selection operator (LASSO), three different machine-learning classifiers (logistic regression, random forest, and XG boost) were trained and compared in the setting of various combinations between four sequences. The highest diagnostic accuracies were achieved when using all sequences, and the difference was significant only when the combination did not include the ADC map. Using all sequences, logistic regression and the random forest classifier yielded higher accuracy compared with the that of the XG boost classifier, with mean area under curve (AUC) values of 0.77, 0.76, and 0.71, respectively. The machine-learning classifier of non-invasive and quantitative radiomics signature could guide the classification of the HPV status.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e043964
Author(s):  
Vishal Sharma ◽  
Vinaykumar Kulkarni ◽  
Dean T Eurich ◽  
Luke Kumar ◽  
Salim Samanani

ObjectiveTo develop machine learning models employing administrative health data that can estimate risk of adverse outcomes within 30 days of an opioid dispensation for use by health departments or prescription monitoring programmes.Design, setting and participantsThis prognostic study was conducted in Alberta, Canada between 2017 and 2018. Participants included all patients 18 years of age and older who received at least one opioid dispensation. Pregnant and cancer patients were excluded.ExposureEach opioid dispensation served as an exposure.Main outcomes/measuresOpioid-related adverse outcomes were identified from linked administrative health data. Machine learning algorithms were trained using 2017 data to predict risk of hospitalisation, emergency department visit and mortality within 30 days of an opioid dispensation. Two validation sets, using 2017 and 2018 data, were used to evaluate model performance. Model discrimination and calibration performance were assessed for all patients and those at higher risk. Machine learning discrimination was compared with current opioid guidelines.ResultsParticipants in the 2017 training set (n=275 150) and validation set (n=117 829) had similar baseline characteristics. In the 2017 validation set, c-statistics for the XGBoost, logistic regression and neural network classifiers were 0.87, 0.87 and 0.80, respectively. In the 2018 validation set (n=393 023), the corresponding c-statistics were 0.88, 0.88 and 0.82. C-statistics from the Canadian guidelines ranged from 0.54 to 0.69 while the US guidelines ranged from 0.50 to 0.62. The top five percentile of predicted risk for the XGBoost and logistic regression classifiers captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, respectively, up from the pretest probability of 1.6%.ConclusionMachine learning classifiers, especially incorporating hospitalisation/physician claims data, have better predictive performance compared with guideline or prescription history only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring programmes and health departments with access to administrative data can use machine learning classifiers to effectively identify those at higher risk compared with current guideline-based approaches.


2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


Sign in / Sign up

Export Citation Format

Share Document