scholarly journals Respiratory syncytial virus-neutralizing serum antibody titers in infants following palivizumab prophylaxis with an abbreviated dosing regimen

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0176152 ◽  
Author(s):  
Jennifer Claydon ◽  
Amitava Sur ◽  
Allison Callejas ◽  
Mihoko Ladd ◽  
Eddie Kwan ◽  
...  
2019 ◽  
Vol 221 (4) ◽  
pp. 534-543 ◽  
Author(s):  
Elizabeth J McFarland ◽  
Ruth A Karron ◽  
Petronella Muresan ◽  
Coleen K Cunningham ◽  
Jennifer Libous ◽  
...  

Abstract Background The safety and immunogenicity of live respiratory syncytial virus (RSV) candidate vaccine, LID/ΔM2-2/1030s, with deletion of RSV ribonucleic acid synthesis regulatory protein M2-2 and genetically stabilized temperature-sensitivity mutation 1030s in the RSV polymerase protein was evaluated in RSV-seronegative children. Methods Respiratory syncytial virus-seronegative children ages 6–24 months received 1 intranasal dose of 105 plaque-forming units (PFU) of LID/ΔM2-2/1030s (n = 21) or placebo (n = 11). The RSV serum antibodies, vaccine shedding, and reactogenicity were assessed. During the following RSV season, medically attended acute respiratory illness (MAARI) and pre- and postsurveillance serum antibody titers were monitored. Results Eighty-five percent of vaccinees shed LID/ΔM2-2/1030s vaccine (median peak nasal wash titers: 3.1 log10 PFU/mL by immunoplaque assay; 5.1 log10 copies/mL by reverse-transcription quantitative polymerase chain reaction) and had ≥4-fold rise in serum-neutralizing antibodies. Respiratory symptoms and fever were common (60% vaccinees and 27% placebo recipients). One vaccinee had grade 2 wheezing with rhinovirus but without concurrent LID/ΔM2-2/1030s shedding. Five of 19 vaccinees had ≥4-fold increases in antibody titers postsurveillance without RSV-MAARI, indicating anamnestic responses without significant illness after infection with community-acquired RSV. Conclusions LID/ΔM2-2/1030s had excellent infectivity without evidence of genetic instability, induced durable immunity, and primed for anamnestic antibody responses, making it an attractive candidate for further evaluation.


2021 ◽  
Author(s):  
Jorge C.G. Blanco ◽  
Lori McGinnes-Cullen ◽  
Arash Kamali ◽  
Fatoumata Sylla ◽  
Marina Boukhavalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life.  In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge (Blanco, et al Journal of Virology 93: e00914-19, https://doi.org/10.1128/JVI.00914-19).  Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization.  We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth.   However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age.  This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy.  The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


1987 ◽  
Vol 1 (3) ◽  
pp. 199-205 ◽  
Author(s):  
J.A. KASEL ◽  
E.E. WALSH ◽  
A.L. FRANK ◽  
B.D. BAXTER ◽  
L.H. TABER ◽  
...  

2001 ◽  
Vol 75 (10) ◽  
pp. 4594-4603 ◽  
Author(s):  
Alexander C. Schmidt ◽  
Josephine M. McAuliffe ◽  
Brian R. Murphy ◽  
Peter L. Collins

ABSTRACT Recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3), a recombinant bovine PIV3 (rBPIV3) in which the F and HN genes were replaced with their HPIV3 counterparts, was used to express the major protective antigens of respiratory syncytial virus (RSV) in order to create a bivalent mucosal vaccine against RSV and HPIV3. The attenuation of rB/HPIV3 is provided by the host range restriction of the BPIV3 backbone in primates. RSV G and F open reading frames (ORFs) were placed under the control of PIV3 transcription signals and inserted individually into the rB/HPIV3 genome in the promoter-proximal position preceding the nucleocapsid protein gene. The recombinant PIV3 expressing the RSV G ORF (rB/HPIV3-G1) was not restricted in its replication in vitro, whereas the virus expressing the RSV F ORF (rB/HPIV3-F1) was eightfold restricted compared to its rB/HPIV3 parent. Both viruses replicated efficiently in the respiratory tract of hamsters, and each induced RSV serum antibody titers similar to those induced by RSV infection and anti-HPIV3 titers similar to those induced by HPIV3 infection. Immunization of hamsters with rB/HPIV3-G1, rB/HPIV3-F1, or a combination of both viruses resulted in a high level of resistance to challenge with RSV or HPIV3 28 days later. These results describe a vaccine strategy that obviates the technical challenges associated with a live attenuated RSV vaccine, providing, against the two leading viral agents of pediatric respiratory tract disease, a bivalent vaccine whose attenuation phenotype is based on the extensive host range sequence differences of BPIV3.


1991 ◽  
Vol 163 (3) ◽  
pp. 679-679 ◽  
Author(s):  
H. Brussow ◽  
H. Werchau ◽  
J. Sidoti ◽  
S. Ballo ◽  
H. Rahim ◽  
...  

2009 ◽  
Vol 137 (12) ◽  
pp. 1684-1686 ◽  
Author(s):  
C. TERROSI ◽  
G. Di GENOVA ◽  
B. MARTORELLI ◽  
M. VALENTINI ◽  
M. G. CUSI

SUMMARYRespiratory syncytial virus (RSV) has been demonstrated to cause substantial disease in elderly and immunocompromised subjects. The relationship of serum antibody to RSV infection and the risk of infection in elderly subjects is controversial, thus we evaluated the presence of neutralizing antibodies to RSV in healthy people of different age groups and the correlation with viral protection. Baseline blood samples from 197 subjects aged 20–80 years were analysed for the presence of anti-RSV antibodies either by indirect immunofluorescence and microneutralization test. The percentage of people who had neutralizing antibodies to RSV was significantly higher (P=0·001) in the youngest group (92·51%) compared to the frail group (36·21%). The RSV antibody level tends to wane in some older people; this factor could determine proneness to RSV re-infections in the elderly who are at a greater risk of developing severe respiratory disease.


2019 ◽  
Vol 97 (Supplement_1) ◽  
pp. 39-40 ◽  
Author(s):  
Kelsey Schubach ◽  
Reinaldo F Cooke ◽  
Alice Brandão ◽  
Thiago Schumaher ◽  
Osvaldo Souza ◽  
...  

Abstract Angus × Hereford calves (n = 159; 87 heifers and 72 steers) were ranked by sex, body weight (BW), and age, and assigned to 1 of 3 vaccination schemes against the bovine respiratory disease (BRD) complex: 1) vaccination at weaning (d 0) and booster at feedyard entry (d 30; CON, n = 53), 2) vaccination 15 d before weaning (d -15) and booster 15 d before feedyard entry (d 15; EARLY, n = 53), and 3) vaccination 15 d after weaning (d 15) and booster 15 d after feedyard entry (d 45; DELAYED, n = 53). Calves were maintained on pasture from d -15 to 30, transported (d 30) for 480 km to a commercial growing yard, and moved (d 180) to an adjacent finishing lot where they remained until slaughter (d 306). Calves were assessed for BRD signs daily from d 0 to 306 according to the DART system. Blood samples were collected and BW recorded on d -15, 0, 15, 30, 45, 60, 75, and 180. Hot carcass weight was recorded upon slaughter, and carcass quality assessed after a 24-h chill. No treatment effects were detected (P ≥ 0.49) for BW gain and carcass traits (P ≥ 0.32). Incidence of BRD (d 0 to 306) was lessened (P < 0.01) in EARLY vs. CON and DELAYED, and similar (P = 0.17) between CON and DELAYED. Treatment × day interactions were detected (P ≤ 0.02) for serum antibody titers against bovine herpesvirus-1, bovine viral diarrhea virus-1, parainfluenza3, and bovine respiratory syncytial virus, which were greater (P ≤ 0.05) in EARLY vs. CON and DELAYED upon feedyard entry. Hence, anticipating initial and booster vaccination against respiratory pathogens to provide both doses prior to shipping appears to be a valid strategy to enhance cattle health responses and mitigate BRD in feedyards.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 236
Author(s):  
Jean François Valarcher ◽  
Sara Hägglund ◽  
Katarina Näslund ◽  
Luc Jouneau ◽  
Ester Malmström ◽  
...  

The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.


Sign in / Sign up

Export Citation Format

Share Document