scholarly journals A Short Protocol for Gene Knockout and Complementation in Xylella fastidiosa Shows that One of the Type IV Pilin Paralogs (PD1926) Is Needed for Twitching while Another (PD1924) Affects Pilus Number and Location

2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Prem P. Kandel ◽  
Hongyu Chen ◽  
Leonardo De La Fuente

ABSTRACT Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2. IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.

2014 ◽  
Vol 80 (23) ◽  
pp. 7176-7185 ◽  
Author(s):  
Luisa F. Cruz ◽  
Jennifer K. Parker ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

ABSTRACTThe plant-pathogenic bacteriumXylella fastidiosais restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility ofX. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified threepilY1homologs inX. fastidiosa(PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in thepilY1-1611 mutant. Ca does not modulate the expression of any of theX. fastidiosaPilY1 homologs, although it increases the expression of the retraction ATPasepilTduring active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provideX. fastidiosawith an adaptive advantage in environments with high Ca concentrations, such as xylem sap.


2011 ◽  
Vol 78 (5) ◽  
pp. 1321-1331 ◽  
Author(s):  
Luisa F. Cruz ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

ABSTRACTXylella fastidiosais a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production ofX. fastidiosabiofilm and movement was analyzed underin vitroconditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.


2013 ◽  
Vol 80 (2) ◽  
pp. 644-652 ◽  
Author(s):  
Ralf Salzer ◽  
Friederike Joos ◽  
Beate Averhoff

ABSTRACTNatural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species.Thermus thermophilusHB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whetherT. thermophilushas any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that inT. thermophilus, T4P and natural transformation are linked but distinct systems.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Vincent Nieto ◽  
Abby R. Kroken ◽  
Melinda R. Grosser ◽  
Benjamin E. Smith ◽  
Matteo M. E. Metruccio ◽  
...  

ABSTRACT Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05 μm s−1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules. IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa. Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Christian M. Harding ◽  
Erin N. Tracy ◽  
Michael D. Carruthers ◽  
Philip N. Rather ◽  
Luis A. Actis ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative, opportunistic pathogen. Recently, multipleA. baumanniigenomes have been sequenced; these data have led to the identification of many genes predicted to encode proteins required for the biogenesis of type IV pili (TFP). However, there is no experimental evidence demonstrating thatA. baumanniistrains actually produce functional TFP. Here, we demonstrated thatA. baumanniistrain M2 is naturally transformable and capable of twitching motility, two classical TFP-associated phenotypes. Strains were constructed with mutations inpilA,pilD, andpilT, genes whose products have been well characterized in other systems. These mutants were no longer naturally transformable and did not exhibit twitching motility. These TFP-associated phenotypes were restored when these mutations were complemented. More PilA was detected on the surface of thepilTmutant than the parental strain, and TFP were visualized on thepilTmutant by transmission electron microscopy. Thus,A. baumanniiproduces functional TFP and utilizes TFP for both natural transformation and twitching motility. Several investigators have hypothesized that TFP might be responsible, in part, for the flagellum-independent surface-associated motility exhibited by manyA. baumanniiclinical isolates. We demonstrated that surface-associated motility was not dependent on the products of thepilA,pilD, andpilTgenes and, by correlation, TFP. The identification of functional TFP inA. baumanniilays the foundation for future work determining the role of TFP in models of virulence that partially recapitulate human disease.IMPORTANCESeveral investigators have documented the presence of genes predicted to encode proteins required for the biogenesis of TFP in manyA. baumanniigenomes. Furthermore, some have speculated that TFP may play a role in the unique surface-associated motility phenotype exhibited by manyA. baumanniiclinical isolates, yet there has been no experimental evidence to prove this. Unfortunately, progress in understanding the biology and virulence ofA. baumanniihas been slowed by the difficulty of constructing and complementing mutations in this species. Strain M2, a recently characterized clinical isolate, is amenable to genetic manipulation. We have established a reproducible system for the generation of marked and/or unmarked mutations using a modified recombineering strategy as well as a genetic complementation system utilizing a modified mini-Tn7element in strain M2. Using this strategy, we demonstrated that strain M2 produces TFP and that TFP are not required for surface-associated motility exhibited by strain M2.


2007 ◽  
Vol 189 (20) ◽  
pp. 7507-7510 ◽  
Author(s):  
Leonardo De La Fuente ◽  
Thomas J. Burr ◽  
Harvey C. Hoch

ABSTRACT Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) μm min−1. A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] μm min−1) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] μm min−1) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces.


2009 ◽  
Vol 191 (21) ◽  
pp. 6513-6524 ◽  
Author(s):  
Hanjeong Harvey ◽  
Marc Habash ◽  
Francisca Aidoo ◽  
Lori L. Burrows

ABSTRACT PilA, the major pilin subunit of Pseudomonas aeruginosa type IV pili (T4P), is a principal structural component. PilA has a conserved C-terminal disulfide-bonded loop (DSL) that has been implicated as the pilus adhesinotope. Structural studies have suggested that DSL is involved in intersubunit interactions within the pilus fiber. PilA mutants with single-residue substitutions, insertions, or deletions in the DSL were tested for pilin stability, pilus assembly, and T4P function. Mutation of either Cys residue of the DSL resulted in pilins that were unable to assemble into fibers. Ala replacements of the intervening residues had a range of effects on assembly or function, as measured by changes in surface pilus expression and twitching motility. Modification of the C-terminal P-X-X-C type II beta-turn motif, which is one of the few highly conserved features in pilins across various species, caused profound defects in assembly and twitching motility. Expression of pilins with suspected assembly defects in a pilA pilT double mutant unable to retract T4P allowed us to verify which subunits were physically unable to assemble. Use of two different PilA antibodies showed that the DSL may be an immunodominant epitope in intact pili compared with pilin monomers. Sequence diversity of the type IVa pilins likely reflects an evolutionary compromise between retention of function and antigenic variation. The consequences of DSL sequence changes should be evaluated in the intact protein since it is technically feasible to generate DSL-mimetic peptides with mutations that will not appear in the natural repertoire due to their deleterious effects on assembly.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182139 ◽  
Author(s):  
Colleen G. Leong ◽  
Rebecca A. Bloomfield ◽  
Caroline A. Boyd ◽  
Amber J. Dornbusch ◽  
Leah Lieber ◽  
...  

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
William E. Sause ◽  
Daniela Keilberg ◽  
Soufiane Aboulhouda ◽  
Karen M. Ottemann

ABSTRACT The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


2020 ◽  
Vol 295 (19) ◽  
pp. 6594-6604 ◽  
Author(s):  
Devon Sheppard ◽  
Jamie-Lee Berry ◽  
Rémi Denise ◽  
Eduardo P. C. Rocha ◽  
Steve Matthews ◽  
...  

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.


Sign in / Sign up

Export Citation Format

Share Document