scholarly journals White matter alterations in the internal capsule and psychomotor impairment in melancholic depression

PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195672 ◽  
Author(s):  
Matthew P. Hyett ◽  
Alistair Perry ◽  
Michael Breakspear ◽  
Wei Wen ◽  
Gordon B. Parker
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Konstantinos Poulakis ◽  
Robert I Reid ◽  
Scott A Przybelski ◽  
David S Knopman ◽  
Jonathan Graff-Radford ◽  
...  

Abstract Deterioration in white-matter health plays a role in cognitive ageing. Our goal was to discern heterogeneity of white-matter tract vulnerability in ageing using longitudinal imaging data (two to five imaging and cognitive assessments per participant) from a population-based sample of 553 elderly participants (age ≥60 years). We found that different clusters (healthy white matter, fast white-matter decliners and intermediate white-matter group) were heterogeneous in the spatial distribution of white-matter integrity, systemic health and cognitive trajectories. White-matter health of specific tracts (genu of corpus callosum, posterior corona radiata and anterior internal capsule) informed about cluster assignments. Not surprisingly, brain amyloidosis was not significantly different between clusters. Clusters had differential white-matter tract vulnerability to ageing (commissural fibres > association/brainstem fibres). Identification of vulnerable white-matter tracts is a valuable approach to assessing risk for cognitive decline.


Author(s):  
Michael Amoo ◽  
Kieron J. Sweeney ◽  
Ronan Kilbride ◽  
Mohsen Javadpour

Abstract Background The surgical management of deep brain lesions is challenging, with significant morbidity. Advances in surgical technology have presented the opportunity to tackle these lesions. Methods We performed a complete resection of a thalamic/internal capsule CM using a tubular retractor system via a parietal trans-sulcal para-fascicular (PTPF) approach without collateral injury to the nearby white matter tracts. Conclusion PTPF approach to lateral thalamic/internal capsule lesions can be safely performed without injury to eloquent white matter fibres. The paucity of major vessels along this trajectory and the preservation of lateral ventricle integrity make this approach a feasible alternative to traditional approaches.


2018 ◽  
Vol 128 (6) ◽  
pp. 1865-1872 ◽  
Author(s):  
Joshua D. Burks ◽  
Andrew K. Conner ◽  
Phillip A. Bonney ◽  
Chad A. Glenn ◽  
Cordell M. Baker ◽  
...  

OBJECTIVEThe orbitofrontal cortex (OFC) is understood to have a role in outcome evaluation and risk assessment and is commonly involved with infiltrative tumors. A detailed understanding of the exact location and nature of associated white matter tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging–based fiber tracking validated by gross anatomical dissection as ground truth, the authors have characterized these connections based on relationships to other well-known structures.METHODSDiffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. The OFC was evaluated as a whole based on connectivity with other regions. All OFC tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. Ten postmortem dissections were then performed using a modified Klingler technique to demonstrate the location of major tracts.RESULTSThe authors identified 3 major connections of the OFC: a bundle to the thalamus and anterior cingulate gyrus, passing inferior to the caudate and medial to the vertical fibers of the thalamic projections; a bundle to the brainstem, traveling lateral to the caudate and medial to the internal capsule; and radiations to the parietal and occipital lobes traveling with the inferior fronto-occipital fasciculus.CONCLUSIONSThe OFC is an important center for processing visual, spatial, and emotional information. Subtle differences in executive functioning following surgery for frontal lobe tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.


2012 ◽  
Vol 24 (9) ◽  
pp. 1483-1493 ◽  
Author(s):  
Senthil Thillainadesan ◽  
Wei Wen ◽  
Lin Zhuang ◽  
John Crawford ◽  
Nicole Kochan ◽  
...  

ABSTRACTBackground: Previous studies using diffusion tensor imaging (DTI) have observed microstructural abnormalities in white matter regions in both Alzheimer's disease and mild cognitive impairment (MCI). The aim of this work was to examine the abnormalities in white matter and subcortical regions of MCI and its subtypes in a large, community-dwelling older aged cohortMethods: A community-based sample of 396 individuals without dementia underwent medical assessment, neuropsychiatric testing, and neuroimaging. Of these, 158 subjects were classified as MCI and 238 as cognitively normal (controls) based on international MCI consensus criteria. Regional fractional anisotropy (FA) and mean diffusivity (MD) measures were calculated from the DTI and compared between groups. The false discovery rate correction was applied for multiple testing.Results: Subjects with MCI did not have significant differences in FA compared with controls after correction for multiple testing, but had increased MD in the right putamen, right anterior limb of the internal capsule, genu and splenium of the corpus callosum, right posterior cingulate gyrus, left superior frontal gyrus, and right and left corona radiata. When compared with controls, changes in left anterior cingulate, left superior frontal gyrus, and right corona radiata were associated with amnestic MCI (aMCI), whereas changes in the right putamen, right anterior limb of the internal capsule, and the right corona radiata were associated with non-amnestic MCI (naMCI). On logistic regression, the FA values in the left superior gyrus and MD values in the anterior cingulate distinguished aMCI from naMCI.Conclusions: MCI is associated with changes in white matter and subcortical regions as seen on DTI. Changes in some anterior brain regions distinguish aMCI from naMCI.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Carson Ingo ◽  
Chen Lin ◽  
James Higgins ◽  
Yurany Arevalo ◽  
Shyam Prabhakaran

Introduction: The effect of white matter hyperintensities (WMH) as measured by fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging on functional impairment and recovery after ischemic stroke has been investigated thoroughly. However, there has been growing interest to investigate normal-appearing white matter (NAWM) microstructural integrity following ischemic stroke onset with techniques such as diffusion tensor imaging (DTI). Methods: 52 patients with acute ischemic stroke and 36 without stroke were evaluated with a DTI and FLAIR imaging protocol and clinically assessed for severity of motor impairment using the Motricity Index within 72 hours of suspected symptom onset. Results: There were widespread decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) and radial diffusivity (RD) for the acute stroke group compared to the non-stroke group. As shown in the abstract figure with the blue voxels, there was a significant positive association between FA and motor function and a significant negative association between MD/RD and motor function. The NAWM regions of interest that were most sensitive to the Motricity Index were the anterior/posterior limb of the internal capsule in the infarcted hemisphere and the splenium of the corpus callosum, external capsule, posterior limb/retrolenticular part of the internal capsule, superior longitudinal fasciculus, and cingulum (hippocampus) of the intra-/contralateral hemisphere. Conclusion: The microstructural integrity of NAWM is a significant parameter to identify neural differences not only between those individuals with and without acute ischemic stroke, but also correlated with severity of acute motor impairment.


2020 ◽  
Vol 14 ◽  
Author(s):  
Tory O. Frizzell ◽  
Lukas A. Grajauskas ◽  
Careesa C. Liu ◽  
Sujoy Ghosh Hajra ◽  
Xiaowei Song ◽  
...  

2009 ◽  
Vol 21 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Stefan Begré ◽  
Claus Kiefer ◽  
Roland von Känel ◽  
Angela Frommer ◽  
Andrea Federspiel

Objective:Studies exploring relation of visual memory to white matter are extensively lacking. The Rey Visual Design Learning Test (RVDLT) is an elementary motion, colour and word independent visual memory test. It avoids a significant contribution from as many additional higher order visual brain functions as possible to visual performance, such as three-dimensional, colour, motion or word-dependent brain operations. Based on previous results, we hypothesised that test performance would be related with white matter of dorsal hippocampal commissure, corpus callosum, posterior cingulate, superior longitudinal fascicle and internal capsule.Methods:In 14 healthy subjects, we measured intervoxel coherence (IC) by diffusion tensor imaging as an indication of connectivity and visual memory performance measured by the RVDLT. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index.Results:Using voxelwise linear regression analyses of the IC values, we found a significant and direct relationship between 11 clusters and visual memory test performance. The fact that memory performance correlated with white matter structure in left and right dorsal hippocampal commissure, left and right posterior cingulate, right callosal splenium, left and right superior longitudinal fascicle, right medial orbitofrontal region, left anterior cingulate, and left and right anterior limb of internal capsule emphasises our hypothesis.Conclusion:Our observations in healthy subjects suggest that individual differences in brain function related to the performance of a task of higher cognitive demands might partially be associated with structural variation of white matter regions.


2019 ◽  
Vol 25 (09) ◽  
pp. 950-960 ◽  
Author(s):  
Douglas P. Terry ◽  
Catherine M. Mewborn ◽  
L. Stephen Miller

AbstractObjective: Multiple concussions sustained in youth sport may be associated with later-life brain changes and worse cognitive outcomes. We examined the association between two or more concussions during high school football and later-life white matter (WM) microstructure (i.e., 22–47 years following football retirement) using diffusion tensor imaging (DTI). Method: Forty former high school football players aged 40–65 who received 2+ concussions during high school football (N = 20), or denied concussive events (N = 20) were recruited. Participants underwent neurocognitive testing and DTI scanning. Results: Groups did not statistically differ on age, education, or estimated pre-morbid intelligence. Tract-based Spatial Statistics (TBSS) correcting for Family-Wise Error (FWE)(p < .05) did not yield differences between groups at the whole-brain level. Region of interest analyses showed higher mean diffusivity (MD) in the anterior limb of the internal capsule (ALIC) in the concussed group compared to the non-concussed former players. More liberal analyses (i.e., p < .001, uncorrected for multiple comparisons, ≥8 voxels) also revealed that former players endorsing 2+ concussions had higher MD in the ALIC. Analyses that covaried for age did not reveal differences at either threshold. Concussive histories were not associated with worse cognitive functioning, nor did it impact the relationship between neuropsychological scores and DTI metrics. Discussion: Results suggest only minimal neuroanatomical brain differences in former athletes many years following original concussive injuries compared to controls.


2020 ◽  
Vol 10 (11) ◽  
pp. 803
Author(s):  
Kelong Cai ◽  
Qian Yu ◽  
Fabian Herold ◽  
Zhimei Liu ◽  
Jingui Wang ◽  
...  

Impairments in social communication (SC) represent one of the core symptoms of autism spectrum disorder (ASD). While previous studies have demonstrated that exercise intervention improves SC in children with ASD, there is currently no neuroscientific evidence supporting its benefits. Therefore, we evaluated the outcomes of a long-term exercise intervention on SC and white matter integrity (WMI) in children with ASD, and further explored the neural mechanism of exercise intervention on SC in these children. Twenty-nine children aged 3–6 years with ASD were assigned to either exercise group (n = 15) or control group (n = 14). The exercise group received a scheduled mini-basketball training program (5 sessions per week, forty minutes per session) for 12 consecutive weeks, while the control group was instructed to maintain their daily activities. Groups were assessed before and after intervention on SC and WMI. SC scores were lower in the exercise group post-intervention. Compared with the control group, WMI of the exercise group showed higher fractional anisotropy in the body of corpus callosum, fornix, right cerebral peduncle, left posterior limb of internal capsule, right retrolenticular part of internal capsule, left anterior corona radiate and left superior fronto-occipital fasciculus; lower mean diffusivity in the left anterior corona radiate and the bilateral corticospinal tract. Furthermore, increased WMI was associated with lower scores on a measure of social cognition in the overall sample. This study is the first to provide evidence that exercise intervention improves SC and white matter integrity in children with autism.


Sign in / Sign up

Export Citation Format

Share Document