scholarly journals Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197118 ◽  
Author(s):  
Adrián Garrido-Bigotes ◽  
Nicolás E. Figueroa ◽  
Pablo M. Figueroa ◽  
Carlos R. Figueroa
2020 ◽  
Author(s):  
Ricardo Bianchetti ◽  
Nicolas Bellora ◽  
Luis A de Haro ◽  
Rafael Zuccarelli ◽  
Daniele Rosado ◽  
...  

AbstractPhytochrome-mediated light and temperature perception has been shown to be a major regulator of fruit development. Furthermore, chromatin remodelling via DNA demethylation has been described as a crucial mechanism behind the fruit ripening process; however, the molecular basis underlying the triggering of this epigenetic modification remains largely unknown. Here, an integrative analyses of the methylome, siRNAome and transcriptome of tomato fruits from phyA and phyB1B2 null mutants was performed, revealing that PHYB1 and PHYB2 influences genome-wide DNA methylation during fruit development and ripening. The experimental evidence indicates that PHYB1B2 signal transduction relies on a gene expression network that includes chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes and remodelling factors) and transcriptional regulators, ultimately leading to altered mRNA profile of photosynthetic and ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits in fleshy fruits.


2021 ◽  
Vol 22 (22) ◽  
pp. 12414
Author(s):  
Xiang Li ◽  
Kewei Cai ◽  
Xiaona Pei ◽  
Yan Li ◽  
Yanbo Hu ◽  
...  

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.


2018 ◽  
Author(s):  
Hongxia Miao ◽  
Peiguang Sun ◽  
Jiuhua Liu ◽  
Zhiqiang Jin ◽  
Biyu Xu

Starch branching enzyme (SBE), which is one of the key enzymes associated with amylopectin biosynthesis, plays important roles in variable biological processes. Despite its importance, SBE is rarely studied in the banana (Musa acuminata L.) which is a typical starchy fruit. Here, a family of ten SBE proteins (MaSBE) was firstly identified through genome-wide characterization in M. acuminata, which could be clustered into three subfamilies. Systematic transcriptome analysis revealed temporal and spatial expression variations of MaSBE genes and differential response patterns under abiotic and biotic stresses in both banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). Moreover, MaSBE2.4 was temporally regulated during fruit development and ripening as well as in response to various abiotic/biotic stresses in both genotypes. Specifically, MaSBE2.3 expression level was higher in FJ than in BX following cold, salt, and drought stress treatments, and it was specifically induced by fungal infection in BX. Characterization of hormone- and stress-related cis-acting elements in the promoters of MaSBE genes suggests their multiple biological functions. In conclusion, our study provides new insights into the complex transcriptional characteristics of the SBE genes, and demonstrates their crucial roles in improving amylopectin biosynthesis and strengthening stress resistance in banana.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Juhua Liu ◽  
Jing Zhang ◽  
Jianbin Zhang ◽  
Hongxia Miao ◽  
Jingyi Wang ◽  
...  

2018 ◽  
Author(s):  
Hongxia Miao ◽  
Peiguang Sun ◽  
Jiuhua Liu ◽  
Zhiqiang Jin ◽  
Biyu Xu

Starch branching enzyme (SBE), which is one of the key enzymes associated with amylopectin biosynthesis, plays important roles in variable biological processes. Despite its importance, SBE is rarely studied in the banana (Musa acuminata L.) which is a typical starchy fruit. Here, a family of ten SBE proteins (MaSBE) was firstly identified through genome-wide characterization in M. acuminata, which could be clustered into three subfamilies. Systematic transcriptome analysis revealed temporal and spatial expression variations of MaSBE genes and differential response patterns under abiotic and biotic stresses in both banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). Moreover, MaSBE2.4 was temporally regulated during fruit development and ripening as well as in response to various abiotic/biotic stresses in both genotypes. Specifically, MaSBE2.3 expression level was higher in FJ than in BX following cold, salt, and drought stress treatments, and it was specifically induced by fungal infection in BX. Characterization of hormone- and stress-related cis-acting elements in the promoters of MaSBE genes suggests their multiple biological functions. In conclusion, our study provides new insights into the complex transcriptional characteristics of the SBE genes, and demonstrates their crucial roles in improving amylopectin biosynthesis and strengthening stress resistance in banana.


Sign in / Sign up

Export Citation Format

Share Document