scholarly journals Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants

PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0200748 ◽  
Author(s):  
Katrin Steinhauer ◽  
Sonja Meyer ◽  
Jens Pfannebecker ◽  
Karin Teckemeyer ◽  
Klaus Ockenfeld ◽  
...  
2017 ◽  
Vol 17 (2) ◽  
pp. 190-196 ◽  
Author(s):  
J. Konieczny ◽  
K. Labisz ◽  
K. Głowik-Łazarczyk ◽  
J. Ćwiek ◽  
Ł. Wierzbicki

Abstract In Poland, researchers have a very strong interest in archaeometallurgy, which, as presented in classical works, focuses on dating artefacts from the prehistoric and early medieval periods in the form of cast iron and copper castings. This study, extending the current knowledge, presents the results of a microstructure investigation into the findings from the Modern era dating back to the late Middle Ages. The investigated material was an object in the form of a heavy solid copper block weighing several kilograms that was excavated by a team of Polish archaeologists working under the direction of Ms Iwona Młodkowska-Przepiórowska during works on the marketplace in the city of Czestochowa during the summer of 2009. Pre-dating of the material indicates the period of the seventeenth century AD. The solid copper block was delivered in the form of a part shaped like a bell, named later in this work as a “kettlebell”. To determine the microstructure, the structural components, chemical composition, and homogeneity, as well as additives and impurities, investigations were carried out using light microscopy, scanning electron microscopy including analysis of the chemical composition performed in micro-areas, and qualitative X-ray phase analysis in order to investigate the phase composition. Interpretation of the analytical results of the material’s microstructure will also help modify and/or develop new methodological assumptions to investigate further archaeometallurgical exhibits, throwing new light on and expanding the area of knowledge of the use and processing of seventeenth-century metallic materials.


1978 ◽  
Vol 25 (11) ◽  
pp. 945-948 ◽  
Author(s):  
H. Fukushima ◽  
M. Doyama

Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HH Alfa ◽  
R Arroo ◽  
S Walsh ◽  
K Ruparelia ◽  
A Bhambra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document