The antimicrobial efficacy of compounds isolated from Acacia nilotica seed pods against Staphylococcus aureus

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HH Alfa ◽  
R Arroo ◽  
S Walsh ◽  
K Ruparelia ◽  
A Bhambra ◽  
...  
2016 ◽  
Vol 33 (3) ◽  
pp. 140-145
Author(s):  
Mst Laila Akter Banu ◽  
AKM Bashar ◽  
Md Mujibur Rahman Howlader ◽  
Md Shamsul Alam ◽  
Md Ashraf Hussain

Microorganisms, usually from the dental caries, are the main sources of diseases in dental pulp (root canals) and periapical region. Facultative bacteria and fungi have been identified in therapy resistant persistent endodontic infection. The objectives of this study was to evaluate the antimicrobial efficacy of Mineral Tri Oxide Aggregate (MTA) against therapy resistant endodontic microorganisms. The efficacy of MTA was also compared with that of calcium hydroxide. Six standard bacterial stains were used: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, bacillus subtilis, Candida albicans and Enterococcus faecalis. The agar diffusion method on Muller- Hilton media was employed. The plates containing media were inoculated with the specified bacterial suspensions. Two standard holes were prepared on each microorganism inoculated plate with a copper puncher and one hole was completely filled with MTA & the other with Ca (OH)2 . The plates were then kept at environmental temperature for one hour to ensure prediffusion and then incubated at 370C for 24 hours. After 24 hours, the diameters of inhibition zones were measured. Tests were replicated for thirty times for each sample and mean values were taken. Zone of inhibition as measured for MTA and Ca (OH)2 were statistically analyzed with Student’s t-Test and Post Hoc Games Howell Test and were presented as mean ± SD to compare of efficacy of MTA and calcium hydroxide on different microorganisms. Both MTA and Ca(OH)2 were found to produce zone of inhibition against Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), , Bacillus subtilis (BTCC 17 ), and Candida albicans (BTCC 493). MTA showed highest activity against S. aureus and lowest activity against P. aeruginosa which was similar to the activity range of Ca (OH)2 against the mentioned organisms. But both of them failed to produce any activity against E. coli and. E. faecalis. MTA was found to produce a lower efficacy than Ca (OH)2 while comparing the zone of inhibition between them and statistically it was significant. Mineral Tri Oxide Aggregate (MTA) showed antimicrobial efficacy against some therapy resistant microorganisms but it did not show antimicrobial efficacy against Escherichia coli and Enterococcus faecalis. MTA was found to produce a lower antimicrobial efficacy than Ca (OH)2.J Bangladesh Coll Phys Surg 2015; 33(3): 140-145


Biosynthesis of silver nanoparticles, especially fungal mediated method is given attention in the development of new drugs for resistance pathogens, molecular diagnosis, drug delivery therapy and in catalytic sensor due to its cost effective, none toxicity and eco-friendly. The present study focused on the fungal mediated biosynthesis of silver nanoparticles using Aspergillus terrues strain (MTCC 9618). The synthesized nanoparticles was monitored by spectrophotometer SEM, XRD and its band gap was determined by Tuac equation. After while the fungal crude cells was exposed to 5mM silver nitrate the reduction reaction was recorded according to red shift colorchange. Based on ultra violet spectrophotometeran absorbance was recorded in a distinct pick around 430nm - 450nm and also the band gab was determined using Tuac equationsuch that 2.08eV, 2.02eV, 2.0eV and 1.96eV at about 10min, 30min, 12h and 24h respectively. The AgNPs coated cotton fabrics was developed through direct exposed to extracellular metabolites and 100ppm colloidal solution of AgNPs. The antimicrobial efficacy of the synthesized AgNPs coted cotton fabrics against gram positive Hospital staphylococcus aureus pathogenstrains was conducted by disk diffusion assay. In which the antimicrobial efficacy of coated cotton-Ag against human pathogens was proofed how the staphylococcus aureus had susceptible too and (16mm) zone of inhibition was recorded. Based on disk diffusion assay at 10ug/mL minimum inhibition concentration (MIC)10.5 mm inhibition zone was noted consequently, this study accomplished that Aspergillus terreus strain mediated biosynthesis of silver nanoparticles is cost effective, time saving, eco-friendly and small spherical (<10nm) had produced against to Physio-chemical means. The bio-synthesized silver nanoparticles cotton fabrics publicized that a higher efficacy of antimicrobial activity against staphylococcus aureus and the result was considerable suggested in widely range used in textile and pharmaceutical industries to enrich durability, strength, quality of products against a clinical pathogens application as well bad odor and spoilage of dusts from fabrics.


Author(s):  
N. A. Bagnyuk ◽  
O. A. Nazarchuk ◽  
Y. M. Babina ◽  
R. M. Chornopyshchuk ◽  
A. V. Kulyk

Recently, among hospital strains of microorganisms, an increase in the number of antiseptic-resistant strains of opportunistic pathogens has been registered, which significantly affects the effectiveness of these drugs. It is important to study their antimicrobial efficacy to justify rational use. The aim is to conduct a comparative study of the antimicrobial efficacy of antiseptics of decamethoxine, chlorhexidine, polyhexanide. During study we examined the antimicrobial activity against 186 clinical strains of microorganisms (Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Enterobacter spp.) isolated from patients with infectious complications in the postoperative period. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of 0.02 % and 0.1 % decamethoxine, 0.05 % chlorhexidine bigluconate, 0.1 % polyhexanide were determined; antimicrobial efficacy of drugs was evaluated by the index of antiseptic activity by conventional methods. The study found high antimicrobial properties of decamethoxine, chlorhexidine, which had a high bactericidal effect on clinical strains of S. aureus, Enterococcus spp., Enterobacter spp. Proved the benefits of antimicrobial activity of the drug based on decamethoxine (p<0.001). The polyhexanide has pronounced antimicrobial properties against A. baumannii, bacteria of the family Enterobactericae, P. aeruginosa. Thus, the leading gram-positive (Staphylococcus aureus, enterococci) and gram-negative pathogens (enterobacteria, acinetobacteria, pseudomonads) are sensitive to polyhexanide, chlorhexidine and the domestic drug decamethoxin, with a probable advantage of the antimicrobial properties of the latter over all gram-positive and most gram-negative microorganisms.


2017 ◽  
Vol 5 (3) ◽  
pp. 2275-2280
Author(s):  
Dr.A. Sudheer ◽  
◽  
Dr.N.V.V.Satya Bhushan ◽  
Dr.U.Siva Kalyan ◽  
Dr.KhoChai Chiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document