scholarly journals New insights of polyamine metabolism in testicular physiology: A role of ornithine decarboxylase antizyme inhibitor 2 (AZIN2) in the modulation of testosterone levels and sperm motility

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209202 ◽  
Author(s):  
Ana Lambertos ◽  
Bruno Ramos-Molina ◽  
Andrés J. López-Contreras ◽  
Asunción Cremades ◽  
Rafael Peñafiel
PLoS ONE ◽  
2009 ◽  
Vol 4 (8) ◽  
pp. e6858 ◽  
Author(s):  
Kristiina Kanerva ◽  
Jani Lappalainen ◽  
Laura T. Mäkitie ◽  
Susanna Virolainen ◽  
Petri T. Kovanen ◽  
...  

FEBS Open Bio ◽  
2014 ◽  
Vol 4 (1) ◽  
pp. 510-521 ◽  
Author(s):  
Bruno Ramos-Molina ◽  
Ana Lambertos ◽  
Andrés J. Lopez-Contreras ◽  
Joanna M. Kasprzak ◽  
Anna Czerwoniec ◽  
...  

2010 ◽  
Vol 20 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Laura T. Mäkitie ◽  
Kristiina Kanerva ◽  
Tuomo Polvikoski ◽  
Anders Paetau ◽  
Leif C. Andersson

1994 ◽  
Vol 304 (1) ◽  
pp. 183-187 ◽  
Author(s):  
Y Murakami ◽  
S Matsufuji ◽  
Y Miyazaki ◽  
S Hayashi

Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. It is a short-lived protein and negatively regulated by its products, polyamines. Its degradation is accelerated by the binding of antizyme, an ODC-inhibitory protein induced by polyamines. To evaluate the physiological importance of antizyme we examined the effect of forced expression of antizyme on cellular ODC and polyamine levels and cell growth. Antizyme almost completely abolished the induction of ODC by growth stimuli. This may have been caused by antizyme-induced rapid degradation of newly synthesized ODC, since the half-life of ODC complexes with antizyme was less than 5 min. Forced expression of antizyme caused reductions of cellular putrescine and spermidine levels, and inhibited cell growth, which was partially restored by the addition of putrescine. These observations suggested a critically important role of antizyme in polyamine metabolism.


2010 ◽  
Vol 316 (11) ◽  
pp. 1896-1906 ◽  
Author(s):  
Kristiina Kanerva ◽  
Laura T. Mäkitie ◽  
Nils Bäck ◽  
Leif C. Andersson

2019 ◽  
Vol 12 (4) ◽  
pp. 311-323 ◽  
Author(s):  
Salvatore Benvenga ◽  
Antonio Micali ◽  
Giovanni Pallio ◽  
Roberto Vita ◽  
Consuelo Malta ◽  
...  

Background: Cadmium (Cd) impairs gametogenesis and damages the blood-testis barrier. Objective: As the primary mechanism of Cd-induced damage is oxidative stress, the effects of two natural antioxidants, myo-inositol (MI) and seleno-L-methionine (Se), were evaluated in mice testes. Methods: Eighty-four male C57 BL/6J mice were divided into twelve groups: 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); Se (0.2 mg/kg/day per os); Se (0.4 mg/kg/day per os); MI (360 mg/kg/day per os); MI plus Se (0.2 mg/kg/day); MI plus Se (0.4 mg/kg/day); CdCl2 (2 mg/kg/day i.p.) plus vehicle; CdCl2 plus MI; CdCl2 plus Se (0.2 mg/kg/day); CdCl2 plus Se (0.4 mg/kg/day); CdCl2 plus MI plus Se (0.2 mg/kg/day); and CdCl2 plus MI plus Se (0.4 mg/kg/day). After 14 days, testes were processed for biochemical, structural and immunohistochemical analyses. Results: CdCl2 increased iNOS and TNF-α expression and Malondialdehyde (MDA) levels, lowered glutathione (GSH) and testosterone, induced testicular lesions, and almost eliminated claudin-11 immunoreactivity. Se administration at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression, maintained GSH, MDA and testosterone levels, structural changes and low claudin-11 immunoreactivity. MI alone or associated with Se at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression and MDA levels, increased GSH and testosterone levels, ameliorated structural organization and increased claudin-11 patches number. Conclusion: We demonstrated a protective effect of MI, a minor role of Se and an evident positive role of the association between MI and Se on Cd-induced damages of the testis. MI alone or associated with Se might protect testes in subjects exposed to toxicants, at least to those with behavior similar to Cd.


Author(s):  
Gabriel O. Oludare ◽  
Gbenga O. Afolayan ◽  
Ganbotei G. Semidara

Abstract Objectives This study aimed to access the protective effects of d-ribose-l-cysteine (DRLC) on cyclophosphamide (CPA) induced gonadal toxicity in male rats. Methods Forty-eight male Sprague-Dawley rats were divided into six groups of eight rats each. Group I the control, received distilled water (10 ml/kg), Group II received a single dose of CPA 100 mg/kg body weight intraperitoneally (i.p), Groups III and IV received a single dose of CPA at 100 mg/kg (i.p) and then were treated with DRLC at 200 mg/kg bodyweight (b.w) and 400 mg/kg b.w for 10 days, respectively. Rats in Groups V and VI received DRLC at 200 and 400 mg/kg b.w for 10 days, respectively. DRLC was administered orally. Results Results showed that CPA increased percentage of abnormal sperm cells and reduced body weight, sperm count, sperm motility, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels (p<0.05). CPA also induced oxidative stress as indicated by the increased malondialdehyde (MDA) content and reduced activities of the oxidative enzymes measured (p<0.05). Liver enzymes were elevated while the blood cells production was decreased in the rats administered CPA. DRLC supplementation enhanced the antioxidant defence system as indicated in the reduced MDA levels and increased activities of the antioxidant enzymes when compared with CPA (p<0.05). Bodyweight, sperm count, sperm motility, FSH, and testosterone levels were increased in the CPA + DRLC II group compared with CPA (p<0.05). Conclusions The results of this present study showed that DRLC has a potential protective effect on CPA-induced gonadotoxicity.


Sign in / Sign up

Export Citation Format

Share Document