scholarly journals A cell-loss-free concave microwell array based size-controlled multi-cellular tumoroid generation for anti-cancer drug screening

PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219834 ◽  
Author(s):  
Sang Woo Lee ◽  
Soo Yeon Jeong ◽  
Tae Hoon Shin ◽  
Junhong Min ◽  
Donghyun Lee ◽  
...  
The Analyst ◽  
2017 ◽  
Vol 142 (19) ◽  
pp. 3579-3587 ◽  
Author(s):  
Jacky Fong-Chuen Loo ◽  
Chengbin Yang ◽  
Hing Lun Tsang ◽  
Pui Man Lau ◽  
Ken-Tye Yong ◽  
...  

We have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 624
Author(s):  
Qiang Liu ◽  
Tian Zhao ◽  
Xianning Wang ◽  
Zhongyao Chen ◽  
Yawei Hu ◽  
...  

Three-dimensional cultured patient-derived cancer organoids (PDOs) represent a powerful tool for anti-cancer drug development due to their similarity to the in vivo tumor tissues. However, the culture and manipulation of PDOs is more difficult than 2D cultured cell lines due to the presence of the culture matrix and the 3D feature of the organoids. In our other study, we established a method for lung cancer organoid (LCO)-based drug sensitivity tests on the superhydrophobic microwell array chip (SMAR-chip). Here, we describe a novel in situ cryopreservation technology on the SMAR-chip to preserve the viability of the organoids for future drug sensitivity tests. We compared two cryopreservation approaches (slow freezing and vitrification) and demonstrated that vitrification performed better at preserving the viability of LCOs. Next, we developed a simple procedure for in situ cryopreservation and thawing of the LCOs on the SMAR-chip. We proved that the on-chip cryopreserved organoids can be recovered successfully and, more importantly, showing similar responses to anti-cancer drugs as the unfrozen controls. This in situ vitrification technology eliminated the harvesting and centrifugation steps in conventional cryopreservation, making the whole freeze–thaw process easier to perform and the preserved LCOs ready to be used for the subsequent drug sensitivity test.


2017 ◽  
Vol 40 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Jianing Yang ◽  
Shengjun Zhao ◽  
Yunfei Ji ◽  
Lili Zhao ◽  
Qingzhu Kong ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4879-4879
Author(s):  
Myoung Woo Lee ◽  
Hye Jin Kim ◽  
Dae Seong Kim ◽  
Meong Hi Son ◽  
Soo Hyun Lee ◽  
...  

Abstract Abstract 4879 Background. A hematological malignant animal model is an essential tool for evaluating efficacy of anti-cancer drugs and elucidating underlying mechanism of leukemogenesis. Intraperitoneal (IP) and intravenous (IV) xenograft of acute lymphoblastic leukemia (ALL) cells have limited capacity as in vivo anti-cancer drug screening system. Purpose. In this study, we aimed to establish an ALL animal model using NOD/SCID mouse and evaluate efficiency and sensitivity of the model as a preclinical drug screening system. Materials and Methods. Firefly luciferase (fLuc)-gene introduced ALL (ALL/fLuc) cell line and patient-originated ALL cells were transplanted into a tibia of NOD/SCID mouse. We conducted a comparative analysis of intra-bone marrow (IBMT) transplanted leukemia model with IP and IV transplantation of leukemic cells. Results. IBMT of ALL/fLuc cells effectively established a bioluminescent leukemia NOD/SCID mouse model. Upon comparison of IBMT model with IP and IV transplantation models, infusing identical number of ALL/fLuc cells into NOD/SCID mice resulted in IBMT model with evaluable bioluminescent signal, but not in IP and IV models. In IBMT model, bioluminescent signals of ALL/fLuc cells emitted from peripheral blood, tibia and infiltrated organs indicated that leukemia model was established. The changes in these signals' strength reflected dose-dependent cytotoxic effects of vincristine, which allowed leukemia model with evaluable bioluminescent signal to be utilized as a preclinical drug screening system. IBMT leukemia model was also established using primary ALL cells that can provide additional insights for the development of leukemia therapeutics. Conclusion. IBMT of ALL/fLuc cells enables development of leukemia mouse model with the greater bioluminescent sensitivity than IP and IV in NOD/SCID to evaluate candidate for development of anti-cancer drug. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 74 (3) ◽  
pp. 187-196
Author(s):  
Jasmina Stojkovska ◽  
Jovana Zvicer ◽  
Milena Milivojevic ◽  
Isidora Petrovic ◽  
Milena Stevanovic ◽  
...  

Development of drugs is a complex, time- and cost-consuming process due to the lack of standardized and reliable characterization techniques and models. Traditionally, drug screening is based on in vitro analysis using two-dimensional (2D) cell cultures followed by in vivo animal testing. Unfortunately, application of the obtained results to humans in about 90 % of cases fails. Therefore, it is important to develop and improve cell-based systems that can mimic the in vivo-like conditions to provide more reliable results. In this paper, we present development and validation of a novel, user-friendly perfusion bioreactor system for single use aimed for cancer research, drug screening, anti-cancer drug response studies, biomaterial characterization, and tissue engineering. Simple design of the perfusion bioreactor provides direct medium flow at physiological velocities (100?250 ?m s-1) through samples of different sizes and shapes. Biocompatibility of the bioreactor was confirmed in short term cultivation studies of cervical carcinoma SiHa cells immobilized in alginate microfibers under continuous medium flow. The results have shown preserved cell viability indicating that the perfusion bioreactor in conjunction with alginate hydrogels as cell carriers could be potentially used as a tool for controlled anti-cancer drug screening in a 3D environment.


Sign in / Sign up

Export Citation Format

Share Document