scholarly journals Small molecule inhibition of lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) alone and in combination in Ewing sarcoma cell lines

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222228 ◽  
Author(s):  
Darcy Welch ◽  
Elliot Kahen ◽  
Brooke Fridley ◽  
Andrew S. Brohl ◽  
Christopher L. Cubitt ◽  
...  
2020 ◽  
Vol 469 ◽  
pp. 111-123 ◽  
Author(s):  
Neri Mercatelli ◽  
Diana Fortini ◽  
Ramona Palombo ◽  
Maria Paola Paronetto

2022 ◽  
Author(s):  
Sumirtha Balaratnam ◽  
Zachary R Torrey ◽  
David R. Calabrese ◽  
Michael T Banco ◽  
Kamyar Yazdani ◽  
...  

Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. Constitutively activated NRAS induces the MAPK and AKT signaling pathways and leads to uncontrolled proliferation and cell growth, making it an attractive target for small molecule inhibition. Like all RAS-family proteins, it has proven difficult to identify small molecules that directly inhibit the protein. An alternative approach would involve targeting the NRAS mRNA. The 5′ untranslated region (5′ UTR) of the NRAS mRNA is reported to contain a G-quadruplex (G4) that regulates translation of NRAS mRNA. Stabilizing the G4 structure with small molecules could reduce NRAS protein expression in cancer cells by impacting translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5′ UTR of the NRAS mRNA. We used a small molecule microarray (SMM) screen to identify molecules that selectively bind to the NRAS-G4. Biophysical studies demonstrated that compound 18 binds reversibly to the NRAS-G4 structure with submicromolar affinity. A Luciferase based reporter assay indicated that 18 inhibits the translation of NRAS via stabilizing the NRAS-G4 in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends (RACE), RT-PCR analysis on 14 different NRAS-expressing cell lines, coupled with analysis of publicly available CAGE seq experiments, revealed that predominant NRAS transcript does not possess the G4 structure. Further analysis of published rG4 and G4 sequencing data indicated the presence of G4 structure in the promoter region of NRAS gene (DNA) but not in the mRNA. Thus, although many NRAS transcripts lack a G4 in many cell lines the broader concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy and this work represents an intriguing example of transcript heterogeneity impacting targetability.


Cancer ◽  
2002 ◽  
Vol 95 (8) ◽  
pp. 1735-1745 ◽  
Author(s):  
Ryszard Braczkowski ◽  
Andrew V. Schally ◽  
Artur Plonowski ◽  
Jozsef L. Varga ◽  
Kate Groot ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6176
Author(s):  
Andrew J. Robles ◽  
Wentao Dai ◽  
Saikat Haldar ◽  
Hongyan Ma ◽  
Victoria M. Anderson ◽  
...  

A screening program designed to identify natural products with selective cytotoxic effects against cell lines representing different types of pediatric solid tumors led to the identification of altertoxin II as a highly potent and selective cytotoxin against Ewing sarcoma cell lines. Altertoxin II, but not the related compounds altertoxin I and alteichin, was highly effective against every Ewing sarcoma cell line tested, with an average 25-fold selectivity for these cells as compared to cells representing other pediatric and adult cancers. Mechanism of action studies revealed that altertoxin II causes DNA double-strand breaks, a rapid DNA damage response, and cell cycle accumulation in the S phase. Our studies also demonstrate that the potent effects of altertoxin II are partially dependent on the progression through the cell cycle, because the G1 arrest initiated by a CDK4/6 inhibitor decreased antiproliferative potency more than 10 times. Importantly, the cell-type-selective DNA-damaging effects of altertoxin II in Ewing sarcoma cells occur independently of its ability to bind directly to DNA. Ultimately, we found that altertoxin II has a dose-dependent in vivo antitumor efficacy against a Ewing sarcoma xenograft, suggesting that it has potential as a therapeutic drug lead and will be useful to identify novel targets for Ewing-sarcoma-specific therapies.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5668
Author(s):  
Laura García-García ◽  
Enrique Fernández-Tabanera ◽  
Saint T. Cervera ◽  
Raquel M. Melero-Fernández de Mera ◽  
Santiago Josa ◽  
...  

Ewing sarcoma is a rare pediatric tumor characterized by chromosomal translocations that give rise to aberrant chimeric transcription factors (e.g., EWSR1-FLI1). EWSR1-FLI1 promotes a specific cellular transcriptional program. Therefore, the study of EWSR1-FLI1 target genes is important to identify critical pathways involved in Ewing sarcoma tumorigenesis. In this work, we focused on the transcription factors regulated by EWSR1-FLI1 in Ewing sarcoma. Transcriptomic analysis of the Ewing sarcoma cell line A673 indicated that one of the genes more strongly upregulated by EWSR1-FLI1 was FEZF1 (FEZ family zinc finger protein 1), a transcriptional repressor involved in neural cell identity. The functional characterization of FEZF1 was performed in three Ewing sarcoma cell lines (A673, SK-N-MC, SK-ES-1) through an shRNA-directed silencing approach. FEZF1 knockdown inhibited clonogenicity and cell proliferation. Finally, the analysis of the FEZF1-dependent expression profile in A673 cells showed several neural genes regulated by FEZF1 and concomitantly regulated by EWSR1-FLI1. In summary, FEZF1 is transcriptionally regulated by EWSR1-FLI1 in Ewing sarcoma cells and is involved in the regulation of neural-specific genes, which could explain the neural-like phenotype observed in several Ewing sarcoma tumors and cell lines.


Oncotarget ◽  
2017 ◽  
Vol 8 (32) ◽  
pp. 52445-52456 ◽  
Author(s):  
Lilly Magdalena Weiß ◽  
Manuela Hugle ◽  
Simone Fulda

Sign in / Sign up

Export Citation Format

Share Document