scholarly journals EphA7 isoforms differentially regulate cortical dendrite development

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0231561
Author(s):  
Carrie E. Leonard ◽  
Maryna Baydyuk ◽  
Marissa A. Stepler ◽  
Denver A. Burton ◽  
Maria J. Donoghue

The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.

2020 ◽  
Author(s):  
Carrie E. Leonard ◽  
Maryna Baydyuk ◽  
Marissa A. Stepler ◽  
Denver A. Burton ◽  
Maria J. Donoghue

AbstractThe shape of a neuron reflects its cellular function and ultimately, how it operates in neural circuits. Dendrites receive and integrate incoming signals, including excitatory input onto dendritic spines, so understanding how dendritic development proceeds is fundamental for discerning neural function. Using loss- and gain-of-function paradigms, we previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: restricting growth early and promoting spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that both full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms of EphA7 are expressed in the developing cortex, with peak expression of EphA7-FL overlapping with dendritic elaboration and highest levels of EphA7-T1 coinciding with spine formation. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 varies during development; in vivo inhibition of kinase-dependent mTOR by rapamycin in EphA7 mutant neurons rescues the dendritic branching, but not the dendritic spine phenotypes. Finally, interaction and signaling modulation was examined. In cells in culture, direct interaction between EphA7-FL and EphA7-T1 is demonstrated which results in EphA7- T1-based modulation of EphA7-FL phosphorylation. In vivo, both isoforms are colocalized to cortical synapses and levels of phosphorylated EphA7-FL decrease as EphA7-T1 levels rise. Thus, the phenotypes of EphA7 during cortical dendrite development are explained by divergent functions of two variants of the receptor.


2014 ◽  
Vol 28 (7) ◽  
pp. 1073-1087 ◽  
Author(s):  
Matasha Dhar ◽  
Mingyan Zhu ◽  
Soren Impey ◽  
Talley J. Lambert ◽  
Tyler Bland ◽  
...  

Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo because db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by short hairpin RNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to cAMP response element–binding protein (CREB) phosphorylation and initiation of CREB-dependent transcription via the MAPK kinase/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Last, leptin suppresses the expression of p250GAP, a miR132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis.


2016 ◽  
Author(s):  
Tharkika Nagendran ◽  
Rylan S. Larsen ◽  
Rebecca L. Bigler ◽  
Shawn B. Frost ◽  
Benjamin D. Philpot ◽  
...  

AbstractInjury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.


2011 ◽  
Vol 115 (2) ◽  
pp. 282-293 ◽  
Author(s):  
Adrian Briner ◽  
Irina Nikonenko ◽  
Mathias De Roo ◽  
Alexandre Dayer ◽  
Dominique Muller ◽  
...  

Background Recent observations demonstrate that anesthetics rapidly impair synaptogenesis during neuronal circuitry development. Whether these effects are lasting and depend on the developmental stage at which these drugs are administered remains, however, to be explored. Methods Wistar rats received propofol anesthesia at defined developmental stages during early postnatal life. The acute and long-term effects of these treatments on neuronal cytoarchitecture were evaluated by Neurolucida and confocal microscopy analysis after iontophoretic injections of Lucifer Yellow into layer 5 pyramidal neurons in the medial prefrontal cortex. Quantitative electron microscopy was applied to investigate synapse density. Results Layer 5 pyramidal neurons of the medial prefrontal cortex displayed intense dendritic growth and spinogenesis during the first postnatal month. Exposure of rat pups to propofol at postnatal days 5 and 10 significantly decreased dendritic spine density, whereas this drug induced a significant increase in spine density when administered at postnatal days 15, 20, or 30. Quantitative electron microscopy revealed that the propofol-induced increase in spine density was accompanied by a significant increase in the number of synapses. Importantly, the propofol-induced modifications in dendritic spine densities persisted up to postnatal day 90. Conclusion These new results demonstrate that propofol anesthesia can rapidly induce significant changes in dendritic spine density and that these effects are developmental stage-dependent, persist into adulthood, and are accompanied by alterations in synapse number. These data suggest that anesthesia in the early postnatal period might permanently impair circuit assembly in the developing brain.


2013 ◽  
Vol 24 (10) ◽  
pp. 1602-1613 ◽  
Author(s):  
Shuhei Ueda ◽  
Manabu Negishi ◽  
Hironori Katoh

In neuronal development, dendritic spine formation is important for the establishment of excitatory synaptic connectivity and functional neural circuits. Developmental deficiency in spine formation results in multiple neuropsychiatric disorders. Dock4, a guanine nucleotide exchange factor (GEF) for Rac, has been reported as a candidate genetic risk factor for autism, dyslexia, and schizophrenia. We previously showed that Dock4 is expressed in hippocampal neurons. However, the functions of Dock4 in hippocampal neurons and the underlying molecular mechanisms are poorly understood. Here we show that Dock4 is highly concentrated in dendritic spines and implicated in spine formation via interaction with the actin-binding protein cortactin. In cultured neurons, short hairpin RNA (shRNA)–mediated knockdown of Dock4 reduces dendritic spine density, which is rescued by coexpression of shRNA-resistant wild-type Dock4 but not by a GEF-deficient mutant of Dock4 or a truncated mutant lacking the cortactin-binding region. On the other hand, knockdown of cortactin suppresses Dock4-mediated spine formation. Taken together, the results show a novel and functionally important interaction between Dock4 and cortactin for regulating dendritic spine formation via activation of Rac.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Shu Juan Puang ◽  
Bavani Elanggovan ◽  
Tendy Ching ◽  
Judy C.G. Sng

Abstract We investigated the effects of environmental enrichment during critical period of early postnatal life and how it interplays with the epigenome to affect experience-dependent visual cortical plasticity. Mice raised in an EE from birth to during CP have increased spine density and dendritic complexity in the visual cortex. EE upregulates synaptic plasticity genes, Arc and Egr1, and a transcription factor MEF2C. We also observed an increase in MEF2C binding to the promoters of Arc and Egr1. In addition, pups raised in EE show a reduction in HDAC5 and its binding to promoters of Mef2c, Arc and Egr1 genes. With an overexpression of Mef2c, neurite outgrowth increased in complexity. Our results suggest a possible underlying molecular mechanism of EE, acting through MEF2C and HDAC5, which drive Arc and Egr1. This could lead to the observed increased dendritic spine density and complexity induced by early EE.


2006 ◽  
Vol 17 (3) ◽  
pp. 1273-1285 ◽  
Author(s):  
Takashi Nishimura ◽  
Tomoya Yamaguchi ◽  
Akinori Tokunaga ◽  
Akitoshi Hara ◽  
Tomonari Hamaguchi ◽  
...  

Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2.


2015 ◽  
Author(s):  
Atul Kumar ◽  
Lars Paeger ◽  
Kosmas Kosmas ◽  
Peter Kloppenburg ◽  
Angelika Noegel ◽  
...  

Actin remodeling is indispensable for dendritic spine development, morphology and density which signify learning, memory and motor skills. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic spine density and neuronal dendritic length were altered in Cap2gt/gt. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. In membrane depolarization assays, Cap2gt/gt synaptosomes exhibit an impaired F/G actin ratio, indicating altered actin dynamics. We show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and is cofilin ser3 phosphorylation dependent. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.


Author(s):  
Pu-Yun Shih ◽  
Bing-Yuan Hsieh ◽  
Ching-Yen Tsai ◽  
Chiu-An Lo ◽  
Brian E. Chen ◽  
...  

Abstract Abnormal synaptic formation and signaling is one of the key molecular features of autism spectrum disorders (ASD). Cortactin binding protein 2 (CTTNBP2), an ASD-linked gene, is known to regulate the subcellular distribution of synaptic proteins, such as cortactin, thereby controlling dendritic spine formation and maintenance. However, it remains unclear how ASD-linked mutations of CTTNBP2 influence its function. Here, using cultured hippocampal neurons and knockin mouse models, we screen seven ASD-linked mutations in the short form of the Cttnbp2 gene and identify that M120I, R533* and D570Y mutations impair CTTNBP2 protein–protein interactions via divergent mechanisms to reduce dendritic spine density in neurons. R533* mutation impairs CTTNBP2 interaction with cortactin due to lack of the C-terminal proline-rich domain. Through an N–C terminal interaction, M120I mutation at the N-terminal region of CTTNBP2 also negatively influences cortactin interaction. D570Y mutation increases the association of CTTNBP2 with microtubule, resulting in a dendritic localization of CTTNBP2, consequently reducing the distribution of CTTNBP2 in dendritic spines and impairing the synaptic function of CTTNBP2. Finally, we generated heterozygous M120I knockin mice to mimic the genetic variation of patients and found they exhibit reduced social interaction. Our study elucidates that different ASD-linked mutations of CTTNBP2 result in diverse molecular deficits, but all have the similar consequence of synaptic impairment.


Sign in / Sign up

Export Citation Format

Share Document