scholarly journals 4-hexylresorcinol-induced protein expression changes in human umbilical cord vein endothelial cells as determined by immunoprecipitation high-performance liquid chromatography

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243975
Author(s):  
Yeon Sook Kim ◽  
Dae Won Kim ◽  
Seong-Gon Kim ◽  
Suk Keun Lee

4-Hexylresorcinol (4HR) is used as a food preservative and an ingredient of toothpaste and cosmetics. The present study was performed using 233 antisera to determine the changes in protein expression induced by 4HR in human umbilical cord vein endothelial cells (HUVECs), and evaluated the 4HR-induced effects in comparison with previous results (Kim et al., 2019). Similar to RAW 264.7 cells, 4HR-treated HUVECs showed decreases in the expression of the proliferation-related proteins, cMyc/MAX/MAD network proteins, p53/RB and Wnt/β-catenin signaling, and they showed inactivation of DNA transcription and protein translation compared to the untreated controls. 4HR upregulated growth factors (TGF-β1, β2, β3, SMAD2/3, SMAD4, HGF-α, Met, IGF-1) and RAS signaling proteins (RAF-B, p38, p-p38, p-ERK-1, and Rab-1), and induced stronger expression of the cellular protection-, survival-, and differentiation-related proteins in HUVECs than in RAW 264.7 cells. 4HR suppressed NFkB signaling in a manner that suggests potential anti-inflammatory and wound healing effects by reducing M1 macrophage polarization and increasing M2 macrophage polarization in both cells. 4HR-treated HUVECs tended to increase the ER stress mediators by upregulating eIF2AK3, ATF4, ATF6, lysozyme, and LC3 and downregulating eIF2α and GADD153 (CHOP), resulting in PARP-1/AIF-mediated apoptosis. These results indicate that 4HR has similar effects on the protein expression of HUVECs and RAW 264.7 cells, but their protein expression levels differ according to cell types. The 4HR-treated cells showed global protein expression characteristic of anticancer and wound healing effects, which could be alleviated simultaneously by other proteins exerting opposite functions. These results suggest that although 4HR has similar effects on the global protein expression of HUVECs and RAW 264.7 cells, the 4HR-induced molecular interferences in those cells are complex enough to produce variable protein expression, leading different cell functions. Moreover, HUVECs have stronger wound healing potential to overcome the impact induced by 4HR than RAW 264.7 cells.

1998 ◽  
Vol 275 (2) ◽  
pp. H662-H667 ◽  
Author(s):  
Outi Saijonmaa ◽  
Tuulikki Nyman ◽  
Päivi Pacek ◽  
Frej Fyhrquist

The effect of the macrophage- and T-lymphocyte-derived cytokine oncostatin M (OSM) on endothelin-1 (ET-1) production in cultured human umbilical cord vein endothelial cells (HUVEC) was studied. OSM (2.5–10 ng/ml) stimulated ET-1 production and the expression of preproendothelin-1 mRNA. The stimulatory effect of OSM was reversed by anti-interleukin (IL)-6 IgG (33 μg/ml). IL-6 (10 ng/ml) was shown to stimulate ET-1 production. The tyrosine kinase inhibitors herbimycin (250–500 ng/ml) and genistein (1–4 μg/ml) suppressed basal ET-1 production and reversed the stimulatory effect of OSM, whereas daidzein (1–8 μg/ml), a less active analog of genistein, had no effect on basal ET-1 production and only partly reversed the stimulatory effect of OSM. The phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibited ET-1 production. Downregulation of protein kinase C (PKC) with PMA (1 μM) preincubation potentiated OSM-induced ET-1 production. In summary, OSM stimulated ET-1 production in cultured HUVEC. The stimulation was probably mediated by IL-6. Furthermore, the present data suggest that tyrosine kinase activation was involved in ET-1 stimulation and that PKC activation leads to suppression of basal and OSM-stimulated ET-1 production.


2004 ◽  
Vol 286 (6) ◽  
pp. H2096-H2102 ◽  
Author(s):  
Outi Saijonmaa ◽  
Tuulikki Nyman ◽  
Pia Stewen ◽  
Frej Fyhrquist

Angiotensin-converting enzyme (ACE) plays an important role in the pathophysiology of cardiovascular disease. We investigated whether atorvastatin, a powerful agent for the prevention and treatment of cardiovascular disease, influences ACE production in endothelial cells. Human umbilical cord vein endothelial cells were treated with VEGF (476 pM), which induced ACE upregulation. Cotreatment with atorvastatin (0.1–10 μM) dose dependently inhibited VEGF-induced ACE upregulation. In the presence of mevalonate (100 μM), atorvastatin failed to downregulate VEGF-induced ACE production. Cotreatment of the cells with either farnesylpyrophosphate (FPP; 5 μM) or geranylgeranylpyrophosphate (GGPP; 5 μM) partially inhibited the suppressive effect of atorvastatin. Pretreatment of the cells with Rho-associated protein kinase inhibitor, Y-27632 (10 μM), partially inhibited VEGF-induced ACE upregulation. VEGF (476 pM) caused PKC phosphorylation, which was inhibited by cotreatment of the cells with atorvastatin. Atorvastatin inhibited VEGF-induced ACE upregulation probably by inhibiting PKC phosphorylation. This effect was mediated via inhibition of the mevalonate pathway. ACE downregulation may be an additional beneficial effect of statins in the treatment of cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document