scholarly journals Physiological and biochemical responses of Kinnow mandarin grafted on diploid and tetraploid Volkamer lemon rootstocks under different water-deficit regimes

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247558
Author(s):  
Muhammad Fasih Khalid ◽  
Sajjad Hussain ◽  
Muhammad Akbar Anjum ◽  
Raphael Morillon ◽  
Shakeel Ahmad ◽  
...  

Water shortage is among the major abiotic stresses that restrict growth and productivity of citrus. The existing literature indicates that tetraploid rootstocks had better water-deficit tolerance than corresponding diploids. However, the associated tolerance mechanisms such as antioxidant defence and nutrient uptake are less explored. Therefore, we evaluated physiological and biochemical responses (antioxidant defence, osmotic adjustments and nutrient uptake) of diploid (2x) and tetraploid (4x) volkamer lemon (VM) rootstocks grafted with kinnow mandarin (KM) under two water-deficit regimes. The KM/4xVM (VM4) and KM/2xVM (VM2) observed decrease in photosynthetic variables, i.e., photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), leaf greenness (SPAD), dark adopted chlorophyll fluorescence (Fv/Fm), dark adopted chlorophyll fluorescence (Fv´/Fm´), relative water contents (RWC) and leaf surface area (LSA), and increase in non-photochemical quenching (NPQ) under both water-deficit regimes. Moreover, oxidative stress indicators, i.e., malondialdehyde (MDA) and hydrogen peroxide, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione reductase (GR) were increased under both water-deficit regimes. Nonetheless, increase was noted in osmoprotectants such as proline (PRO) and glycine betaine (GB) and other biochemical compounds, including antioxidant capacity (AC), total phenolic content (TPC) and total soluble protein (TSP) in VM2 and VM4 under both water-deficit regimes. Dry biomass (DB) of both rootstocks was decreased under each water-deficit condition. Interestingly, VM4 showed higher and significant increase in antioxidant enzymes, osmoprotectants and other biochemical compounds, while VM2 exhibited higher values for oxidative stress indicators. Overall, results indicated that VM4 better tolerated water-deficit stress by maintaining photosynthetic variables associated with strong antioxidant defence machinery as compared to VM2. However, nutrient uptake was not differed among tested water-deficit conditions and rootstocks. The results conclude that VM4 can better tolerate water-deficit than VM2. Therefore, VM4 can be used as rootstock in areas of high-water deficiency for better citrus productivity.

2020 ◽  
Vol 48 (3) ◽  
pp. 1560-1572
Author(s):  
Hossein FARAHANI ◽  
Nour Ali SAJEDI ◽  
Hamid MADANI ◽  
Mehdi CHANGIZI ◽  
Mohammad R. NAEINI

In this field experiment, the effect of potassium silicate (PS) on the physiological and biochemical responses of Damask rose was investigated under the water deficit stress. The treatments were four levels of irrigation water application including 100, 75, 50 and 25% plant water requirement (PWR) and potassium silicate at three rates (0, i.e., just pure water, 0.2 and 0.4%), once (in spring or summer) or twice (once in spring and once in summer) during the plant growth. The results showed that with irrigation of 75% of plant water requirement significantly reduced the concentration of chlorophyll a (Chl a, 170%), chlorophyll b (Chl b, 163%) and carotenoids (91%), the leaf relative water content (RWC, 14.8%) and the total flower yield (20%) as compared to control. The elevated malondialdehyde (MDA) content and ion leakage, as two indicators of oxidative damage, were observed in the plants subjected to the water deficit stress. In response to oxidative stress induced by water deficit stress, the leaf catalase (CAT, 59.5%) activity and concentration of proline (64.8%) as compared to control increased. The foliar-applied Si at two rates of 0.2 and 0.4% in spring and summer resulted in a higher concentration of Chl a (57.3% and 61.7%), Chl b (31% and 24.6%) and carotenoid content as compared to control, respectively. The increased concentration of proline and higher activity of CAT in the plants supplied with Si led to the higher leaf RWC and less intensity of oxidative damage, namely ion leakage and MDA content. According to the results, with the potassium silicate spraying in 0.2 or 0.4% both in spring and summer at the irrigation level equal to 50% of the PWR, the optimum flower yield was achieved.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115746 ◽  
Author(s):  
Ivanildes C. dos Santos ◽  
Alex-Alan Furtado de Almeida ◽  
Dário Anhert ◽  
Alessandro S. da Conceição ◽  
Carlos P. Pirovani ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190284 ◽  
Author(s):  
Ablaa Kabbadj ◽  
Bouchra Makoudi ◽  
Mohammed Mouradi ◽  
Nicolas Pauly ◽  
Pierre Frendo ◽  
...  

2018 ◽  
Vol 56 (4) ◽  
pp. 1019-1030 ◽  
Author(s):  
W. A. Ansari ◽  
N. Atri ◽  
B. Singh ◽  
P. Kumar ◽  
S. Pandey

Sign in / Sign up

Export Citation Format

Share Document