scholarly journals Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248694
Author(s):  
Stephanie Dias ◽  
Sumaiya Adam ◽  
Yoonus Abrahams ◽  
Paul Rheeder ◽  
Carmen Pheiffer

DNA methylation is increasingly recognized as a potential biomarker of metabolic disease. However, there is limited information on the impact of human immunodeficiency virus (HIV) infection on the candidacy of DNA methylation to serve as molecular biomarkers. This study investigated the effect of HIV infection on DNA methylation patterns in the peripheral blood of South African women with (n = 95) or without (n = 191) gestational diabetes mellitus (GDM). DNA methylation levels at eight CpG sites in the adiponectin gene (ADIPOQ) promoter were measured using bisulfite conversion and pyrosequencing. Differences between HIV negative (-) and positive (+) women were observed. In HIV- women, methylation at CpG -3400 was lower in GDM+ women compared to those with normoglycemia (8.5-fold; p = 0.004), and was associated with higher fasting glucose (β-co-efficient = 0.973; p = 0.006) and lower adiponectin (β-co-efficient = -0.057; p = 0.014) concentrations. These associations were not observed in HIV+ women. In silico analysis showed that Transcription Factor AP2-alpha is able to bind to the altered CpG site, suggesting that CpG -3400 may play a functional role in the regulation of ADIPOQ expression. Our findings show that DNA methylation differs by HIV status, suggesting that HIV infection needs to be taken into consideration in studies exploring DNA methylation as a biomarker of GDM in high HIV prevalence settings.

2019 ◽  
Vol 20 (23) ◽  
pp. 5828 ◽  
Author(s):  
Stephanie Dias ◽  
Sumaiya Adam ◽  
Paul Rheeder ◽  
Johan Louw ◽  
Carmen Pheiffer

Increasing evidence implicate altered DNA methylation in the pathophysiology of gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes) were differentially methylated between GDM and non-GDM groups. Enriched pathways included GDM-related pathways such as insulin resistance, glucose metabolism and inflammation. DNA methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate insulin production and secretion and may offer potential as an epigenetic biomarker in our population. Further validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in different populations are required to investigate their candidacy as biomarkers of GDM.


2021 ◽  
Vol 10 (4) ◽  
pp. 835
Author(s):  
Manoja P. Herath ◽  
Jeffrey M. Beckett ◽  
Andrew P. Hills ◽  
Nuala M. Byrne ◽  
Kiran D. K. Ahuja

Exposure to untreated gestational diabetes mellitus (GDM) in utero increases the risk of obesity and type 2 diabetes in adulthood, and increased adiposity in GDM-exposed infants is suggested as a plausible mediator of this increased risk of later-life metabolic disorders. Evidence is equivocal regarding the impact of good glycaemic control in GDM mothers on infant adiposity at birth. We systematically reviewed studies reporting fat mass (FM), percent fat mass (%FM) and skinfold thicknesses (SFT) at birth in infants of mothers with GDM controlled with therapeutic interventions (IGDMtr). While treating GDM lowered FM in newborns compared to no treatment, there was no difference in FM and SFT according to the type of treatment (insulin, metformin, glyburide). IGDMtr had higher overall adiposity (mean difference, 95% confidence interval) measured with FM (68.46 g, 29.91 to 107.01) and %FM (1.98%, 0.54 to 3.42) but similar subcutaneous adiposity measured with SFT, compared to infants exposed to normal glucose tolerance (INGT). This suggests that IGDMtr may be characterised by excess fat accrual in internal adipose tissue. Given that intra-abdominal adiposity is a major risk factor for metabolic disorders, future studies should distinguish adipose tissue distribution of IGDMtr and INGT.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 506 ◽  
Author(s):  
Susana Contreras-Duarte ◽  
Lorena Carvajal ◽  
María Jesús Garchitorena ◽  
Mario Subiabre ◽  
Bárbara Fuenzalida ◽  
...  

Gestational diabetes mellitus (GDM) associates with fetal endothelial dysfunction (ED), which occurs independently of adequate glycemic control. Scarce information exists about the impact of different GDM therapeutic schemes on maternal dyslipidemia and obesity and their contribution to the development of fetal-ED. The aim of this study was to evaluate the effect of GDM-treatments on lipid levels in nonobese (N) and obese (O) pregnant women and the effect of maternal cholesterol levels in GDM-associated ED in the umbilical vein (UV). O-GDM women treated with diet showed decreased total cholesterol (TC) and low-density lipoproteins (LDL) levels with respect to N-GDM ones. Moreover, O-GDM women treated with diet in addition to insulin showed higher TC and LDL levels than N-GDM women. The maximum relaxation to calcitonin gene-related peptide of the UV rings was lower in the N-GDM group compared to the N one, and increased maternal levels of TC were associated with even lower dilation in the N-GDM group. We conclude that GDM-treatments modulate the TC and LDL levels depending on maternal weight. Additionally, increased TC levels worsen the GDM-associated ED of UV rings. This study suggests that it could be relevant to consider a specific GDM-treatment according to weight in order to prevent fetal-ED, as well as to consider the possible effects of maternal lipids during pregnancy.


2012 ◽  
Vol 15 (10) ◽  
pp. 1810-1817 ◽  
Author(s):  
Peggy C Papathakis ◽  
Kerry E Pearson

AbstractObjectiveTo investigate the impact of fortification by comparing food records and selected biochemical indicators of nutritional status pre- and post-fortification.DesignMean intake from 24 h recalls (n 142) was compared with the Estimated Average Requirement (EAR) to determine the proportion with inadequate intake. In a subsample (n 34), diet and serum retinol, folate, ferritin and Zn were compared pre- and post-fortification for fortified nutrients vitamin A, thiamin, riboflavin, niacin, folic acid, Fe and Zn.SettingSouth Africa.SubjectsBreast-feeding women (ninety-four HIV-infected, forty eight HIV-uninfected) measured at ∼6, 14, 24 weeks, and 9 and 12 months postpartum.ResultsPre-fortification, >80 % of women did not meet the EAR for vitamins A, C, D, thiamin, riboflavin, niacin, B6, B12 and folate and minerals Zn, iodine and Ca. Dietary intake post-fortification increased for all fortified nutrients. In post-fortification food records, >70 % did not meet the EAR for Zn and vitamins A, riboflavin and B6. Serum folate and Zn increased significantly post-fortification (P < 0·001 for both), with no change in ferritin and a reduction in retinol. Post-fortification marginal/deficient folate status was reduced (73·5 % pre v. 3·0 % post; P < 0·001), as was Zn deficiency (26·5 % pre v. 5·9 % post; P < 0·05). Pre- and post-fortification, >93 % were retinol replete. There was no change in Fe deficiency (16·7 % pre v. 19·4 % post; P = 0·728).ConclusionsMicronutrient intake improved with fortification, but >70 % of lactating women did not meet the EAR for Zn, vitamins A, riboflavin and B6. Although 100 % exceeded the EAR for Fe after fortification, Fe status did not improve.


Diabetes Care ◽  
2015 ◽  
Vol 38 (5) ◽  
pp. 844-851 ◽  
Author(s):  
Ravi Retnakaran ◽  
Caroline K. Kramer ◽  
Chang Ye ◽  
Simone Kew ◽  
Anthony J. Hanley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document