scholarly journals Effects of insecticides on mortality, growth and bioaccumulation in black soldier fly (Hermetia illucens) larvae

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249362
Author(s):  
Nathan Meijer ◽  
Theo de Rijk ◽  
Joop J. A. van Loon ◽  
Lisa Zoet ◽  
H. J. van der Fels-Klerx

Residues of persistent insecticides may be present in the substrates on which insects are reared for food and feed, which may affect insect growth or survival. In addition, insecticidal substances may bio-accumulate in reared insects. The objective of this study was to assess potential effects of selected insecticides on the growth and survival of black soldier fly larvae (BSFL, Hermetia illucens) and on their safety when used as animal feed. Six insecticides (chlorpyrifos, propoxur, cypermethrin, imidacloprid, spinosad, tebufenozide) with different modes of action were tested in two sequential experiments. Cypermethrin was also tested with the synergist piperonyl butoxide (PBO). Standard BSFL substrate was spiked to the respective maximum residue level (MRL) of each insecticide allowed by the European Union to occur in feed; and BSFL were reared on these substrates. Depending on the observed effects in the first experiment, spiked concentrations tested in the second experiment were increased or reduced. At the concentrations applied (1 and 10 times MRL), three of the six tested substances (chlorpyrifos, propoxur, tebufenozide) did not affect the survival or biomass growth of BSFL, compared to the control (non-spiked) treatments. At MRL, imidacloprid stimulated the growth of BSFL compared to the controls. Spinosad and cypermethrin at the MRL level negatively affected growth and survival. The effects of cypermethrin appeared to be augmented by addition of PBO. A mean bio-accumulation factor of ≤0.01 was found in both experiments for all substances–except for cypermethrin, which was comparatively high, but still below 1 (0.79 at 0.1 mg/kg). The lack of accumulation of insecticides in the larvae suggests that there is no risk of larval products being uncompliant with feed MRLs. However, we conclude that insecticides present in substrates may affect growth and survival of BSFL. More research on a larger variety of substances and insect species is recommended.

2021 ◽  
pp. 1-14
Author(s):  
S. Alagappan ◽  
D. Rowland ◽  
R. Barwell ◽  
S.M.O. Mantilla ◽  
D. Mikkelsen ◽  
...  

The demand for animal-based protein sources is increasing rapidly. The rearing of insects on bioproducts and their subsequent use as feedstock for animals has been receiving a lot of attention lately. Hermetia illucens, black soldier flies are highly investigated insects owing to their ability to reduce and transform different types of wastes, such as agricultural, household, municipal wastes, and human sludge. The nutritional composition and amino acid profile of black soldier fly larvae (BSFL) raised on these organic wastes is similar to that of several feed constituents making it a suitable material for feed. However, the commercialisation of BSFL is limited due to prevailing unclear legislative requirements regarding their use as feed. In this paper, the legislative landscape involved in using BSFL as feed in different regions is addressed. European Union, Australia, Canada and USA specifically allow the trade and manufacture of BSFL as feed under specific conditions. Interestingly, most countries where entomophagy is a tradition, lack specific regulations concerning their use as feed and are currently drafting regulatory frameworks. Understanding the legislative layout is essential for harmonising the industrial upscaling of BSFL as animal feed.


2021 ◽  
pp. 1-10
Author(s):  
N. Van Looveren ◽  
D. Vandeweyer ◽  
J. van Schelt ◽  
L. Van Campenhout

The main use of black soldier fly larvae (Hermetia illucens) is currently as an animal feed ingredient. While the bacterial community of the larvae has been characterised repeatedly via sequencing, microbiological safety assessment based on culture-dependent techniques is still scarce. This study focused on the occurrence of the spore-forming foodborne pathogen Clostridium perfringens during rearing and consecutive processing of the larvae, based on observations in a single rearing facility. C. perfringens vegetative cells and spores were determined, in addition to total viable counts, total aerobic spore counts and intrinsic parameters including pH, water activity and moisture content. All samples were obtained from an industrial production plant. In a preliminary experiment, substrate ingredients and dried larvae were analysed, but the larvae were produced with a previous batch of the substrate mixture. A second, more detailed, experiment was performed where all samples were collected sequentially from the same production run (substrate ingredients, substrate mixture, starting larvae, harvested larvae, residue, dried larvae and stored dried larvae). In the two experiments, (presumptive) C. perfringens, as determined on tryptose sulphite cycloserine agar, was found at low numbers in the ingredients and in the second experiment it was also found in the substrate mixture. Over the two experiments, total C. perfringens counts (i.e. vegetative cells plus spores) ranged between 3.0±0.1 and <1.2±0.5 log cfu/g and C. perfringens spores ranged between 2.5±0.1 and <1.0±0.0 log cfu/g. Interestingly, vegetative cells and spores of C. perfringens were below the detection limit in all larvae samples. Therefore, it appears that at this production site and based on the samples investigated, the pathogen did not colonise the larvae. However, these results indicate that insect producers should monitor this pathogen among others, and install good hygiene practices to avoid contamination.


2021 ◽  
pp. 1-12
Author(s):  
G. Tirtawijaya ◽  
J.-S. Choi

Black soldier fly larvae (BSFL; Hermetia illucens) are known as an alternative feed for livestock, but their lack of polyunsaturated fatty acids (such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) makes it less valuable. To overcome these problems, BSFL substrate (chicken feed) was fortified with squid liver oil (SLO) at five different concentrations (0, 2.5, 5, 10, and 20%). The growth rate, feed conversion, and nutritional content of BSFL were evaluated at day 15 of rearing. Of the five concentrations, SLO 5% showed the highest growth increase (25.82-fold) among the other treatments (20.63-22.98-fold; P<0.05). The fortification of SLO 5% did not result in differences in survival and feed conversion of larvae compared to larvae fed the control substrate. By rearing BSFL in a substrate containing SLO 5%, the lipid content of the larvae was 32% higher than that of larvae fed the control substrate (P<0.05). The accumulation of lipids was faster in the substrate containing SLO 5% (33.20% for 8 days) than in the control substrate (24.36% for 15 days). The control group of BSFL contained no DHA or EPA, but after rearing on the SLO 5% fortified substrate, the larvae contained DHA at an average level of 2.99 g/100 g lipid and EPA was 2.68 g/100 g lipid. Harvested larvae from SLO 5% treatment was within safe levels of Pb, Cd, As, and Hg (840, 370, 860, and 26.7 μg/kg, respectively), under the EU threshold for animal feed. Based on our results, it concluded that BSFL enriched with PUFAs, DHA and EPA can be considered as important nutritional components of animal feed without excessive heavy metals accumulation by feeding SLO in an appropriate amount.


2021 ◽  
Vol 64 (6) ◽  
pp. 1989-1997
Author(s):  
Patrick Erbland ◽  
Andrei Alyokhin ◽  
Michael Peterson

HighlightsBlack soldier fly larvae can be used to convert agricultural wastes into animal feed.A prototype automated incubation system for producing black soldier fly larvae was designed and tested.The system was successful in growing larvae to a harvestable size.The system retained metabolic heat generated by larval and microbial activity.Abstract. Biological conversion of agricultural wastes into animal feed ingredients using larvae of black soldier fly, (Hermetia illucens) is a promising technology that improves the sustainability of agriculture. We designed and tested a prototype automated incubation system for producing black soldier fly larvae. The system consisted of six 50 L plastic bins enclosed on a ventilated metal rack (178 cm high, 66 cm wide). Water was supplied to maintain a moisture level of about 60% in each bin via soaker hoses connected to sensor-activated solenoid valves. The system was successful in maintaining moisture and temperature suitable for larval development and for growing larvae to harvestable size with minimal labor and energy consumption. Biological activity in the bins generated a considerable amount of metabolic heat, most of which was trapped in the substrate in each bin. This heat may be valuable for rearing black soldier fly larvae in areas with cool climates because this species has low tolerance of cold temperatures but challenging in areas with warm climates. Keywords: Biological conversion, Black soldier fly, Metabolic heat generation, Waste management.


2021 ◽  
pp. 101400
Author(s):  
Fernanda M. Tahamtani ◽  
Emma Ivarsson ◽  
Viktoria Wiklicky ◽  
Cecilia Lalander ◽  
Helena Wall ◽  
...  

Author(s):  
Tomas N Generalovic ◽  
Shane A McCarthy ◽  
Ian A Warren ◽  
Jonathan M D Wood ◽  
James Torrance ◽  
...  

Abstract Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a BUSCO completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analysed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of a lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome five. Release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterisation of genes of interest and genetic modification of this economically important species.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 90
Author(s):  
Ahmad Alshannaq ◽  
Jae-Hyuk Yu

The most common, toxic, and carcinogenic mycotoxins found in human food and animal feed are the aflatoxins (AFs). The United States is a leading exporter of various nuts, with a marketing value of $9.1 billion in 2019; the European Union countries are the major importers of U.S. nuts. In the past few years, border rejections and notifications for U.S. tree nuts and peanuts exported to the E.U. countries have increased due to AF contamination. In this work, we analyzed notifications from the “Rapid Alert System for Food and Feed (RASFF)” on U.S. food and feed products contaminated with mycotoxins, primarily AFs, for the 10-year period 2010–2019. Almost 95% of U.S. mycotoxin RASFF notifications were reported for foods and only 5% for feeds. We found that 98.9% of the U.S. food notifications on mycotoxins were due to the AF contamination in almond, peanut, and pistachio nuts. Over half of these notifications (57.9%) were due to total AF levels greater than the FDA action level in food of 20 ng g−1. The Netherlands issued 27% of the AF notifications for U.S. nuts. Border rejection was reported for more than 78% of AF notifications in U.S. nuts. All U.S. feed notifications on mycotoxins occurred due to the AF contamination. Our research contributes to better understanding the main reasons behind RASFF mycotoxins notifications of U.S. food and feed products destined to E.U. countries. Furthermore, we speculate possible causes of this problem and provide a potential solution that could minimize the number of notifications for U.S. agricultural export market.


2021 ◽  
pp. 1-12
Author(s):  
N.F. Addeo ◽  
C. Li ◽  
T.W. Rusch ◽  
A.J. Dickerson ◽  
A.M. Tarone ◽  
...  

Population growth and rapid urbanisation have increased the global demand for animal feed and protein sources. Therefore, traditional animal feed production should be increased through the use of alternative nutrient sources. Insects as feed are beginning to fill this need. One such insect is the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae). However, to more effectively mass produce the black soldier fly, a better understanding of its thermal biology is needed. Thus, the aim of this study was to evaluate the impact of age, size, and sex on adult black soldier fly thermal preference. The thermal preference of adult black soldier flies was determined by exposing flies to a thermal gradient with a range of surface temperatures and monitoring their positions over time. An aluminium plate was used to create a linear thermal gradient where surface temperatures ranged from ~15-60 °C. Flies were distinguished by age (1-d-post-emergence vs 7-d-post-emergence), size (large vs small) and sex (male vs female) to assess whether thermal preference differed by specific life-history traits. Thermal preference for 7-d-post-emergence adults was significantly lower (19.2 °C) than 1-d-post-emergence adults (28.7 °C), respectively. Similarly, small adults selected significantly cooler (21.1 °C) temperatures than large adults (26.9 °C). No significant differences in thermal preferences were found between sex, regardless of age or size. In fact, males and females had similar thermal preference of 23.8 and 24.2 °C, respectively. This study reveals that multiple life-history traits of adult black soldier fly affect their thermal preference, and thus should be taken into consideration by mass rearing facilities to optimize production.


Sign in / Sign up

Export Citation Format

Share Document